A335431 Numbers of the form q*(2^k), where q is one of the Mersenne primes (A000668) and k >= 0.
3, 6, 7, 12, 14, 24, 28, 31, 48, 56, 62, 96, 112, 124, 127, 192, 224, 248, 254, 384, 448, 496, 508, 768, 896, 992, 1016, 1536, 1792, 1984, 2032, 3072, 3584, 3968, 4064, 6144, 7168, 7936, 8128, 8191, 12288, 14336, 15872, 16256, 16382, 24576, 28672, 31744, 32512, 32764, 49152, 57344, 63488, 65024, 65528, 98304, 114688, 126976, 130048, 131056, 131071
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
qs = 2^MersennePrimeExponent[Range[6]] - 1; max = qs[[-1]]; Reap[Do[n = 2^k*q; If[n <= max, Sow[n]], {k, 0, Log2[max]}, {q, qs}]][[2, 1]] // Union (* Amiram Eldar, Feb 18 2021 *)
-
PARI
A000265(n) = (n>>valuation(n,2)); isA000668(n) = (isprime(n)&&!bitand(n,1+n)); isA335431(n) = isA000668(A000265(n));
Formula
Sum_{n>=1} 1/a(n) = 2 * A173898 = 1.0329083578... - Amiram Eldar, Feb 18 2021
Comments