cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335436 Triangle read by rows: T(n,k) = 2*n+1 for k = 0 and otherwise T(n,k) = Sum_{i=n-k..n, j=0..i-n+k, i<>n or j<>k} T(i,j).

Original entry on oeis.org

1, 3, 4, 5, 8, 21, 7, 12, 35, 96, 9, 16, 49, 144, 410, 11, 20, 63, 192, 574, 1680, 13, 24, 77, 240, 738, 2240, 6692, 15, 28, 91, 288, 902, 2800, 8604, 26112, 17, 32, 105, 336, 1066, 3360, 10516, 32640, 100296, 19, 36, 119, 384, 1230, 3920, 12428, 39168, 122584, 380480
Offset: 0

Views

Author

Oboifeng Dira, Jul 14 2020

Keywords

Examples

			Triangle begins:
  1;
  3,  4;
  5,  8, 21;
  7, 12, 35,  96;
  9, 16, 49, 144, 410;
  ...
T(3,2) = ((2+sqrt(2))^3-(2-sqrt(2))^3)*(6-2+1)/(4*sqrt(2)) = (28*sqrt(2))*(5)/(4*sqrt(2)) = 35.
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if k = 0 and 0 <= n then 2*n+1 elif 1 <= k and k <= n then round((((2+sqrt(2))^(k+1)-(2-sqrt(2))^(k+1))*(2*n-k+1)/(4*sqrt(2)))) else 0 end if end proc:seq(print(seq(T(n, k), k=0..n)), n=0..9);
  • PARI
    T(n,k) = if (k==0, 2*n+1, if (k<=n, sum(i=n-k, n, sum(j=0, i-n+k, if ((i==n) && (j==k), 0, T(i,j)), 0))));
    matrix(10, 10, n, k, T(n-1, k-1)) \\ Michel Marcus, Sep 08 2020
    
  • PARI
    T(n, k) = if (k==0, 2*n+1, if (k>n, 0, my(w=quadgen(8, 'w)); ((2+w)^(k+1)-(2-w)^(k+1))*(2*n-k+1)/(4*w)));
    matrix(10, 10, n, k, T(n-1, k-1)) \\ Michel Marcus, Sep 10 2020

Formula

T(n,0) = 2*n+1 for k=0;
T(n,k) = ((2+sqrt(2))^(k+1)-(2-sqrt(2))^(k+1))*(2*n-k+1)/(4*sqrt(2)) for 1<=k<=n.