A335459 Number of permutations of the prime indices of n! with at least one non-singleton run.
0, 0, 0, 0, 4, 18, 102, 786, 3960, 51450, 675570, 10804710, 139674024, 2793377664, 58662908640, 1798893694080, 26985313555200, 782574083010720, 25992638958686400, 857757034323189000, 30021498596590300800, 1563341714743040232000, 64179292280096037844800, 2631350957341279888915200
Offset: 0
Keywords
Examples
The a(4) = 4 and a(5) = 18 permutations: (1,1,1,2) (1,1,1,2,3) (1,1,2,1) (1,1,1,3,2) (1,2,1,1) (1,1,2,1,3) (2,1,1,1) (1,1,2,3,1) (1,1,3,1,2) (1,1,3,2,1) (1,2,1,1,3) (1,2,3,1,1) (1,3,1,1,2) (1,3,2,1,1) (2,1,1,1,3) (2,1,1,3,1) (2,1,3,1,1) (2,3,1,1,1) (3,1,1,1,2) (3,1,1,2,1) (3,1,2,1,1) (3,2,1,1,1)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Length[Select[Permutations[primeMS[n!]],MatchQ[#,{_,x_,x_,_}]&]],{n,0,10}]
-
PARI
\\ See A335452 for count. a(n)={my(sig=factor(n!)[, 2]); vecsum(sig)!/vecprod([k! | k<-sig]) - count(sig)} \\ Andrew Howroyd, Apr 17 2021
Extensions
a(11)-a(13) from Vaclav Kotesovec, Jul 07 2020
Terms a(14) and beyond from Andrew Howroyd, Apr 17 2021
Comments