A335464 Number of compositions of n with a run of length > 2.
0, 0, 0, 1, 1, 3, 8, 18, 39, 86, 188, 406, 865, 1836, 3874, 8135, 17003, 35413, 73516, 152171, 314151, 647051, 1329936, 2728341, 5587493, 11424941, 23327502, 47567628, 96879029, 197090007, 400546603, 813258276, 1649761070, 3343936929, 6772740076, 13707639491
Offset: 0
Keywords
Examples
The a(3) = 1 through a(7) = 18 compositions: (111) (1111) (1112) (222) (1114) (2111) (1113) (1222) (11111) (3111) (2221) (11112) (4111) (11121) (11113) (12111) (11122) (21111) (11131) (111111) (13111) (21112) (22111) (31111) (111112) (111121) (111211) (112111) (121111) (211111) (1111111)
Crossrefs
Compositions contiguously avoiding (1,1) are A003242.
Compositions with some part > 2 are A008466.
Compositions by number of adjacent equal parts are A106356.
Compositions where each part is adjacent to an equal part are A114901.
Compositions contiguously avoiding (1,1,1) are A128695.
Compositions with adjacent parts coprime are A167606.
Compositions contiguously matching (1,1) are A261983.
Compositions with all equal parts contiguous are A274174.
Patterns contiguously matched by compositions are A335457.
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, 1, add(`if`(abs(t)<>j, b(n-j, j), `if`(t=-j, 0, b(n-j, -j))), j=1..n)) end: a:= n-> ceil(2^(n-1))-b(n, 0): seq(a(n), n=0..40); # Alois P. Heinz, Jul 06 2020
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,x_,x_,_}]&]],{n,0,10}] (* Second program: *) b[n_, t_] := b[n, t] = If[n == 0, 1, Sum[If[Abs[t] != j, b[n - j, j], If[t == -j, 0, b[n - j, -j]]], {j, 1, n}]]; a[n_] := Ceiling[2^(n-1)] - b[n, 0]; a /@ Range[0, 40] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
Formula
Extensions
a(23)-a(35) from Alois P. Heinz, Jul 06 2020
Comments