A335506 Start with a(0) = 1; thereafter a(n) is obtained from 5*a(n-1) by removing all 7's.
1, 5, 25, 125, 625, 3125, 15625, 8125, 40625, 203125, 1015625, 508125, 2540625, 1203125, 6015625, 3008125, 15040625, 5203125, 26015625, 13008125, 65040625, 325203125, 1626015625, 813008125, 4065040625, 20325203125, 101626015625, 50813008125, 254065040625
Offset: 0
Examples
For n <= 6, no 7's occur in 5^n, so a(n) = 5^n. Deleting the 7 in 5*a(6) = 78125, we obtain a(7) = 8125.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,100000,0,0,0,-100000).
Crossrefs
Cf. A335505.
Programs
-
Mathematica
Remove7[n_] := FromDigits[Select[IntegerDigits[n], # != 7 &]]; a[0] = 1; a[n_] := a[n] = Remove7[5 * a[n - 1]]; Array[a, 29, 0] (* Amiram Eldar, Jun 20 2020 *)
-
Python
from sympy.ntheory.factor_ import digits from functools import reduce def drop(x,n,k): # Drop all digits k from x in base n. return reduce(lambda x,j:n*x+j if j!=k else x,digits(x, n)[1:],0) def A335506(n): if n==0: return 1 else: return drop(5*A335506(n-1),10,7)
Formula
a(n) = a(n-4) + 100000*(a(n-16) - a(n-20)) for n > 22.
Recurrence (for n > 2):
a(n+1) = 5*a(n) if n is 1, 3, 4, 5, 7, 8, 9, 11, 13, or 15 mod 16 (these are the cases where 5*a(n) doesn't contain any 7's);
a(n+1) = (a(n) + 625)/2 if n is 2, 6, 10, or 14 mod 16;
a(n+1) = 5*a(n) - 7*10^(5*n/16 + 2) if n is 0 mod 16;
a(n+1) = 5*a(n) - 115*10^(5*(n + 4)/16) if n is 12 mod 16.
Explicit expressions:
a(16*n) = (37*2^4*10^(5*n - 2) - 1)*5^5/123 for n >= 1;
a(16*n + 1) = (2^12*10^(5*n - 4) - 1)*5^6/123 for n >= 1;
a(16*n + 2) = (2^12*10^(5*n - 4) - 1)*5^7/123 for n >= 1;
a(16*n + 3) = (2^8*10^(5*n - 1) - 1)*5^4/123 for n >= 0;
a(16*n + 4) = (2^8*10^(5*n - 1) - 1)*5^5/123 for n >= 0;
a(16*n + 5) = (2^8*10^(5*n - 1) - 1)*5^6/123 for n >= 0;
a(16*n + 6) = (2^8*10^(5*n - 1) - 1)*5^7/123 for n >= 0;
a(16*n + 7) = (2^4*10^(5*n + 2) - 1)*5^4/123 for n >= 0;
a(16*n + 8) = (2^4*10^(5*n + 2) - 1)*5^5/123 for n >= 0;
a(16*n + 9) = (2^4*10^(5*n + 2) - 1)*5^6/123 for n >= 0;
a(16*n + 10) = (2^4*10^(5*n + 2) - 1)*5^7/123 for n >= 0;
a(16*n + 11) = (10^(5*n + 5) - 1)*5^4/123 for n >= 0;
a(16*n + 12) = (10^(5*n + 5) - 1)*5^5/123 for n >= 0;
a(16*n + 13) = (37*2^8*10^(5*n) - 1)*5^6/123 for n >= 0;
a(16*n + 14) = (37*2^8*10^(5*n) - 1)*5^7/123 for n >= 0;
a(16*n + 15) = (37*2^4*10^(5*n + 3) - 1)*5^4/123 for n >= 0.
Comments