cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335506 Start with a(0) = 1; thereafter a(n) is obtained from 5*a(n-1) by removing all 7's.

Original entry on oeis.org

1, 5, 25, 125, 625, 3125, 15625, 8125, 40625, 203125, 1015625, 508125, 2540625, 1203125, 6015625, 3008125, 15040625, 5203125, 26015625, 13008125, 65040625, 325203125, 1626015625, 813008125, 4065040625, 20325203125, 101626015625, 50813008125, 254065040625
Offset: 0

Views

Author

Pontus von Brömssen, Jun 13 2020

Keywords

Comments

This sequence is a rare non-periodic case of the recurrence where x(0)=1 and x(n+1) is obtained from m*x(n) by removing all digits k and all trailing zeros in base b. In fact, except for (m, b, k) = (5, 10, 7) (this sequence), x is eventually periodic whenever m <= 5 and 2 <= b <= 32, or m <= 16 and 2 <= b <= 16. However, for negative b it seems that x is non-periodic more frequently, for example when (m, b, k) is (2, -5, 1) or (2, -8, 1).

Examples

			For n <= 6, no 7's occur in 5^n, so a(n) = 5^n. Deleting the 7 in 5*a(6) = 78125, we obtain a(7) = 8125.
		

Crossrefs

Cf. A335505.

Programs

  • Mathematica
    Remove7[n_] := FromDigits[Select[IntegerDigits[n], # != 7 &]]; a[0] = 1; a[n_] := a[n] = Remove7[5 * a[n - 1]]; Array[a, 29, 0] (* Amiram Eldar, Jun 20 2020 *)
  • Python
    from sympy.ntheory.factor_ import digits
    from functools import reduce
    def drop(x,n,k):
      # Drop all digits k from x in base n.
      return reduce(lambda x,j:n*x+j if j!=k else x,digits(x, n)[1:],0)
    def A335506(n):
      if n==0:
        return 1
      else:
        return drop(5*A335506(n-1),10,7)

Formula

a(n) = a(n-4) + 100000*(a(n-16) - a(n-20)) for n > 22.
Recurrence (for n > 2):
a(n+1) = 5*a(n) if n is 1, 3, 4, 5, 7, 8, 9, 11, 13, or 15 mod 16 (these are the cases where 5*a(n) doesn't contain any 7's);
a(n+1) = (a(n) + 625)/2 if n is 2, 6, 10, or 14 mod 16;
a(n+1) = 5*a(n) - 7*10^(5*n/16 + 2) if n is 0 mod 16;
a(n+1) = 5*a(n) - 115*10^(5*(n + 4)/16) if n is 12 mod 16.
Explicit expressions:
a(16*n) = (37*2^4*10^(5*n - 2) - 1)*5^5/123 for n >= 1;
a(16*n + 1) = (2^12*10^(5*n - 4) - 1)*5^6/123 for n >= 1;
a(16*n + 2) = (2^12*10^(5*n - 4) - 1)*5^7/123 for n >= 1;
a(16*n + 3) = (2^8*10^(5*n - 1) - 1)*5^4/123 for n >= 0;
a(16*n + 4) = (2^8*10^(5*n - 1) - 1)*5^5/123 for n >= 0;
a(16*n + 5) = (2^8*10^(5*n - 1) - 1)*5^6/123 for n >= 0;
a(16*n + 6) = (2^8*10^(5*n - 1) - 1)*5^7/123 for n >= 0;
a(16*n + 7) = (2^4*10^(5*n + 2) - 1)*5^4/123 for n >= 0;
a(16*n + 8) = (2^4*10^(5*n + 2) - 1)*5^5/123 for n >= 0;
a(16*n + 9) = (2^4*10^(5*n + 2) - 1)*5^6/123 for n >= 0;
a(16*n + 10) = (2^4*10^(5*n + 2) - 1)*5^7/123 for n >= 0;
a(16*n + 11) = (10^(5*n + 5) - 1)*5^4/123 for n >= 0;
a(16*n + 12) = (10^(5*n + 5) - 1)*5^5/123 for n >= 0;
a(16*n + 13) = (37*2^8*10^(5*n) - 1)*5^6/123 for n >= 0;
a(16*n + 14) = (37*2^8*10^(5*n) - 1)*5^7/123 for n >= 0;
a(16*n + 15) = (37*2^4*10^(5*n + 3) - 1)*5^4/123 for n >= 0.