A335507 Index of the least Wendt determinant (A048954) divisible by prime(n).
3, 2, 4, 3, 5, 28, 8, 9, 11, 7, 5, 9, 20, 14, 23, 13, 29, 15, 11, 35, 9, 13, 41, 11, 32, 25, 17, 53, 27, 28, 7, 13, 17, 23, 37, 15, 39, 27, 83, 43, 89, 45, 19, 32, 28, 11, 21, 37, 113, 19, 29, 34, 40, 25, 16, 131, 67, 15, 69, 35, 47, 73, 17, 31, 39, 79, 33, 21, 173, 29, 32, 179
Offset: 1
Keywords
Examples
a(5) = 5 because Wendt(5) = 3751 = 11^2*131. It is divisible by prime(5) = 11 and Wendt(5) is the least Wendt determinant divisible by 11.
Links
- Charles Helou, On Wendt's Determinant, Math. Comp., 66 (1997) No. 219, 1341-1346.
- Emma Lehmer, On a Resultant Connected with Fermat's Last Theorem, Bull. Amer. Math. Soc. 41 (1935), 864-867.
- Eric Weisstein's World of Mathematics, Circulant matrix.
- Wikipedia, Circulant matrix.
Crossrefs
Cf. A048954.
Programs
-
Mathematica
Wendt[n_]:=Module[{x},Resultant[x^n-1,(1+x)^n-1,x]]; findW[n_]:= Module[{m=1},While[!IntegerQ[Wendt[m]/n]||Mod[m,6]==0,m++];m]; Table[findW[Prime[n]],{n,1,100}]
Comments