A335532 Decimal expansion of the asymptotic value of the second raw moment of the maximal exponent in the prime factorizations of n (A051903).
4, 3, 0, 1, 3, 0, 2, 4, 0, 0, 3, 1, 3, 3, 6, 6, 5, 9, 9, 9, 8, 0, 6, 8, 9, 3, 4, 0, 4, 1, 8, 7, 7, 5, 7, 9, 9, 2, 2, 9, 8, 9, 1, 2, 9, 7, 6, 3, 4, 7, 7, 4, 3, 1, 6, 4, 7, 3, 8, 6, 9, 9, 1, 7, 2, 7, 2, 4, 8, 1, 5, 9, 3, 0, 3, 2, 5, 0, 3, 8, 7, 7, 0, 0, 3, 4, 1
Offset: 1
Examples
4.30130240031336659998068934041877579922989129763477... For the numbers n=1..2^20, the values of H(n) = A051903(n) are in the range [0..20]. Their mean value is 894015/524288 = 1.705198..., their second raw moment is 140939/32768 = 4.301116..., and their standard deviation is sqrt(383019202687/274877906944) = 1.180430...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.6 Niven's constant, pp. 112-113.
Links
- Ivan Niven, Averages of Exponents in Factoring Integers, Proc. Amer. Math. Soc., Vol. 22, No. 2 (1969), pp. 356-360.
- D. Suryanarayana and R. Sita Rama Chandra Rao, On the maximum and minimum exponents in factoring integers, Archiv der Mathematik, Vol. 28, No. 1 (1977), pp. 261-269.
- Eric Weisstein's World of Mathematics, Niven's Constant.
- Wikipedia, Niven's constant.
Programs
-
Mathematica
RealDigits[1 + Sum[(2*j - 1)*(1 - 1/Zeta[j]), {j, 2, 400}], 10, 100][[1]]
Formula
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} A051903(k)^2.
Equals 1 + Sum_{j>=2} (2*j-1) * (1 - 1/zeta(j)).
Comments