cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A334623 Sum of the n-th powers of the descent set statistics for permutations of [n].

Original entry on oeis.org

1, 1, 2, 18, 1576, 2675100, 128235838496, 265039489112493900, 31306198216486969509375104, 278983981168082455883720325976751040, 235157286166918393786165504356030195355598048512, 23075317400822150539572583950910707053701314350537805923757600
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2020

Keywords

Crossrefs

Main diagonal of A334622.

Programs

  • Maple
    b:= proc(u, o, t) option remember; expand(`if`(u+o=0, 1,
          add(b(u-j, o+j-1, t+1)*x^floor(2^(t-1)), j=1..u)+
          add(b(u+j-1, o-j, t+1), j=1..o)))
        end:
    a:= n-> (p-> add(coeff(p, x, i)^n, i=0..degree(p)))(b(n, 0$2)):
    seq(a(n), n=0..12);
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = Expand[If[u + o == 0, 1,
        Sum[b[u - j, o + j - 1, t + 1]*x^Floor[2^(t - 1)], {j, 1, u}] +
        Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]]];
    a[n_] := Function[p, Sum[Coefficient[p, x, i]^n, {i, 0, Exponent[p, x]}]][ b[n, 0, 0]];
    a /@ Range[0, 12] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)

Formula

a(n) = A334622(n,n).
a(n) = Sum_{j=0..ceiling(2^(n-1))-1} A060351(n,j)^n.

A335545 A(n,k) is the sum of the k-th powers of the (positive) number of permutations of [n] with j descents (j=0..max(0,n-1)); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 6, 4, 1, 1, 2, 18, 24, 5, 1, 1, 2, 66, 244, 120, 6, 1, 1, 2, 258, 2664, 5710, 720, 7, 1, 1, 2, 1026, 29284, 322650, 188908, 5040, 8, 1, 1, 2, 4098, 322104, 19888690, 55457604, 8702820, 40320, 9, 1, 1, 2, 16386, 3543124, 1276095330, 16657451236, 17484605040, 524888040, 362880, 10
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2020

Keywords

Examples

			Square array A(n,k) begins:
  1,   1,      1,        1,           1,             1, ...
  1,   1,      1,        1,           1,             1, ...
  2,   2,      2,        2,           2,             2, ...
  3,   6,     18,       66,         258,          1026, ...
  4,  24,    244,     2664,       29284,        322104, ...
  5, 120,   5710,   322650,    19888690,    1276095330, ...
  6, 720, 188908, 55457604, 16657451236, 5025377832180, ...
  ...
		

Crossrefs

Columns k=0-2 give: A028310, A000142, A168562.
Rows n=0+1, 2-3 give: A000012, A007395(k+1), A178789(k+1).
Main diagonal gives A335546.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          expand(add(b(u-j, o+j-1, 1)*x^t, j=1..u))+
                 add(b(u+j-1, o-j, 1), j=1..o))
        end:
    A:= (n, k)-> (p-> add(coeff(p, x, i)^k, i=0..degree(p)))(b(n, 0$2)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
    # second Maple program:
    A:= (n, k)-> add(combinat[eulerian1](n, j)^k, j=0..max(0, n-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    B[n_, k_] := B[n, k] = Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k+1}];
    A[0, ] = 1; A[n, k_] := Sum[B[n, j]^k, {j, 0, n-1}];
    Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 11 2021 *)

Formula

A(n,k) = Sum_{j=0..max(0,n-1)} A173018(n,j)^k.
Showing 1-2 of 2 results.