A335552 Triangle T(n,k) read by rows: in the Josephus problem with n initial numbers on a line: eliminate each second and reverse left-right-direction of elimination. T(n,k) is the (n-k+1)st element removed, 1<=k<=n.
1, 3, 1, 3, 1, 4, 1, 5, 3, 4, 1, 5, 3, 6, 4, 3, 7, 1, 5, 6, 4, 3, 7, 1, 5, 8, 6, 4, 9, 1, 5, 3, 7, 8, 6, 4, 9, 1, 5, 3, 7, 10, 8, 6, 4, 11, 3, 7, 1, 5, 9, 10, 8, 6, 4, 11, 3, 7, 1, 5, 9, 12, 10, 8, 6, 4, 9, 1, 13, 5, 3, 7, 11, 12, 10, 8, 6, 4, 9, 1, 13, 5, 3, 7, 11, 14, 12, 10, 8, 6, 4, 11, 3, 15
Offset: 1
Examples
The triangle starts 1 3 1 3 1 4 1 5 3 4 1 5 3 6 4 3 7 1 5 6 4 3 7 1 5 8 6 4 9 1 5 3 7 8 6 4 9 1 5 3 7 10 8 6 4 11 3 7 1 5 9 10 8 6 4 11 3 7 1 5 9 12 10 8 6 4 9 1 13 5 3 7 11 12 10 8 6 4 9 1 13 5 3 7 11 14 12 10 8 6 4 11 3 15 7 1 5 9 13 14 12 10 8 6 4 11 3 15 7 1 5 9 13 16 14 12 10 8 6 4 1 17 9 13 5 3 7 11 15 16 14 12 10 8 6 4 1 17 9 13 5 3 7 11 15 18 16 14 12 10 8 6 4 3 19 11 15 7 1 5 9 13 17 18 16 14 12 10 8 6 4 3 19 11 15 7 1 5 9 13 17 20 18 16 14 12 10 8 6 4
Links
- Georg Fischer, Table of n, a(n) for n = 1..1000
- K. Matsumoto, T. Nakamigawa, M. Watanabe, On the switchback vertion of Josephus Problem, Yokohama Math. J. 53 (2007) 83, function f_k(n).
- Index to sequences related to the Josephus problem
Crossrefs
Cf. A090569 (column k=1).
Programs
-
Maple
sigr := proc(n,r) floor(n/2^r) ; end proc: # A063695 f := proc(n) local ndigs,fn,k ; ndigs := convert(n,base,2) ; fn := 0 ; for k from 2 to nops(ndigs) by 2 do fn := fn+op(k,ndigs)*2^(k-1) end do; fn ; end proc: g := proc(t,n) local r; if t =1 then 0 ; elif t > 1 then r := ilog2( (n-1)/(t-1) ) ; (-2)^r*(f( sigr(2*n-1,r) )+f( sigr(n-1,r) )-2*t+3) ; end if; end proc: ft := proc(t,n) f(n-1)+1+g(t,n) ; end proc: for n from 1 to 20 do for t from 1 to n-1 do printf("%3d ", ft(t,n)) ; end do: printf("\n") ; end do: