cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335557 Primitive abundant numbers version 2 (abundant numbers all of whose proper divisors are deficient numbers) and increasing any prime factor in the prime factorization gives a non-abundant number when factored back.

Original entry on oeis.org

20, 70, 104, 464, 650, 836, 945, 1575, 1952, 2002, 2205, 3230, 4030, 5830, 7192, 7232, 7425, 7912, 8415, 8925, 9555, 11096, 11132, 11492, 12705, 15028, 17816, 20482, 32128, 32445, 33345, 35650, 40850, 45356, 45885, 46035, 47804, 49875, 51765, 51850, 55796, 57584, 61904
Offset: 1

Views

Author

David A. Corneth, Jun 14 2020

Keywords

Examples

			104 is in the sequence as none of its divisors is abundant and its prime factorization, 2^3 * 13 has the property that when any prime factor is increased to the next prime factor, we get 3^3 * 13 = 351 which isn't abundant (it's then deficient as it's not perfect) or we get 2^3*17 = 136 which is deficient.
		

Crossrefs

Cf. A071395.

Programs

  • Mathematica
    primabQ[n_] := DivisorSigma[1, n] > 2n && AllTrue[Most @ Divisors[n], DivisorSigma[1, #] < 2# &]; seqQ[n_] := Module[{f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]]; q = NextPrime[p]; AllTrue[n*(q/p)^e, DivisorSigma[1, #] <= 2# &]]; Select[Range[10^5], primabQ[#] && seqQ[#] &] (* Amiram Eldar, Jul 05 2020 *)