A335559 a(n) = 3*a(n-1) + 4*a(n-2) - 2*a(n-3) with a(0)=0, a(1)=1, a(2)=2.
0, 1, 2, 10, 36, 144, 556, 2172, 8452, 32932, 128260, 499604, 1945988, 7579860, 29524324, 115000436, 447938884, 1744769748, 6796063908, 26471392948, 103108894980, 401620128916, 1564353180772, 6093322268020, 23734139269316, 92447000518484, 360090914096676
Offset: 0
Examples
Here are four of the a(4) = 36 possible tilings of a 2 x 2 x 3 box with cubes and plates: . ______ ______ ______ _______ ./ / / /| / /___/| /___/ /| / / /| /_/_/_/ | /_/___/|| /___/_/ | /_/___ //| | | | | / | | ||/ | | | / | |___|// |_|_|_|/ |_|___|/ |_ _|_|/ |_|___|/
Links
- Qianyu Guo, Cube-plate Tiling Numbers and Their Identities, Pioneer Academics, Vol 7, pp. 227-237, 2020.
- Index entries for linear recurrences with constant coefficients, signature (3,4,-2).
Programs
-
Mathematica
LinearRecurrence[{3, 4, -2}, {0, 1, 2}, 30] (* Greg Dresden, Jun 14 2020 *)
-
PARI
Vec((1 - x) / (1 - 3*x - 4*x^2 + 2*x^3) + O(x^30)) \\ Colin Barker, Jun 14 2020
Formula
G.f.: (1 - x) / (1 - 3*x - 4*x^2 + 2*x^3). - Colin Barker, Jun 14 2020
Extensions
More terms from Colin Barker, Jun 14 2020
Comments