A335570 Number A(n,k) of n-step k-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 7, 6, 1, 1, 1, 5, 13, 17, 10, 1, 1, 1, 6, 21, 40, 47, 20, 1, 1, 1, 7, 31, 81, 136, 125, 35, 1, 1, 1, 8, 43, 146, 325, 496, 333, 70, 1, 1, 1, 9, 57, 241, 686, 1433, 1753, 939, 126, 1, 1, 1, 10, 73, 372, 1315, 3476, 6473, 6256, 2597, 252, 1
Offset: 0
Examples
A(2,2) = 3: [(0,0),(1,1),(2,2)], [(0,0),(1,1),(0,1)], [(0,0),(1,1),(1,0)]. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, 7, 8, ... 1, 3, 7, 13, 21, 31, 43, 57, ... 1, 6, 17, 40, 81, 146, 241, 372, ... 1, 10, 47, 136, 325, 686, 1315, 2332, ... 1, 20, 125, 496, 1433, 3476, 7525, 14960, ... 1, 35, 333, 1753, 6473, 18711, 46165, 102173, ... ...
Links
- Alois P. Heinz, Antidiagonals n = 0..60, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, b(n-1, map(x-> x+1, l))+add( `if`(l[i]>0, b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..nops(l))) end: A:= (n, k)-> b(n, [0$k]): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
b[n_, l_] := b[n, l] = If[n == 0, 1, b[n - 1, l + 1] + Sum[If[l[[i]] > 0, b[n - 1, Sort[ReplacePart[l, i -> l[[i]] - 1]]], 0], {i, 1, Length[l]}]]; A[n_, k_] := b[n, Table[0, {k}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)
Formula
A(n,k) == 1 (mod k) for k >= 2.