A335598 Squares that remain squares when the repunit with the same number of digits is added.
0, 25, 289, 2025, 13225, 100489, 198025, 319225, 466489, 4862025, 19758025, 42471289, 1975358025, 3199599225, 60415182025, 134885049289, 151192657225, 197531358025, 207612366025, 248956092025, 447136954489, 588186226489, 19753091358025, 31996727599225, 311995522926025, 1975308691358025
Offset: 1
Examples
0 is a term because 0 + 1 = 1. The result is another square. 25 is a term because 25 + 11 = 36. The result is another square. 289 is a term because 289 + 111 = 400. The result is another square.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(d,q,m) local x,y; if d < q/d then return NULL fi; x:= ((d-q/d)/2)^2; if x >= 10^m and x < 10^(m+1) then x else NULL fi; end proc: R:= 0: for m from 1 to 20 do q:= (10^m-1)/9; V:= sort(convert(map(f, numtheory:-divisors(q),q,m-1),list)); R:= R, op(V); od: R; # Robert Israel, Aug 21 2020
-
PARI
lista(limit)={for(k=0, sqrtint(limit), my(t=k^2); if(issquare(t + (10^if(t, 1+logint(t,10), 1)-1)/9), print1(t, ", ")))} { lista(10^12) } \\ Andrew Howroyd, Aug 11 2020
Extensions
Name corrected by Robert Israel, Aug 26 2020