A335621 Number of integer-sided triangles with perimeter n such that the sum of each pair of side lengths is squarefree.
0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 1, 1, 2, 3, 4, 2, 3, 2, 2, 4, 5, 4, 4, 3, 3, 3, 3, 5, 5, 4, 4, 6, 8, 5, 8, 8, 12, 7, 12, 7, 10, 6, 10, 10, 15, 14, 20, 14, 18, 17, 21, 20, 25, 20, 23, 18, 19, 16, 20, 22, 24, 21, 25, 21, 22, 20, 22, 23, 28, 22, 28, 22, 24, 20, 23, 25
Offset: 1
Keywords
Links
- Wikipedia, Integer Triangle
Crossrefs
Programs
-
Mathematica
Table[Sum[Sum[MoebiusMu[i + k]^2*MoebiusMu[n - i]^2*MoebiusMu[n - k]^2 * Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
Formula
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * mu(i+k)^2 * mu(n-i)^2 * mu(n-k)^2, where mu is the Möbius function (A008683).