A335652 Numbers k such that Omega(k+1) = Omega(k) + 2, where Omega(k) = A001222(k) is the number of prime factors of k with multiplicity.
7, 11, 15, 17, 19, 29, 35, 39, 41, 43, 55, 67, 87, 97, 101, 109, 113, 134, 137, 155, 163, 173, 175, 181, 183, 203, 207, 209, 211, 219, 229, 241, 242, 247, 249, 257, 259, 279, 281, 283, 295, 305, 314, 317, 327, 329, 331, 337, 339, 341, 351, 353, 371, 373, 401, 404, 409, 413, 433, 455
Offset: 1
Keywords
Examples
7 is prime, Omega(7) = 1, 7 + 1 = 8 = 2*2*2, Omega(8) = 3.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
Omegas:= [seq(numtheory:-bigomega(i),i=1..1001)]: select(i -> Omegas[i]+2=Omegas[i+1], [$1..1000]); # Robert Israel, Jun 16 2020
-
Mathematica
m = 2; s = {}; Do[If[PrimeOmega[x + 1] == PrimeOmega[x] + m, AppendTo[s, x]], {x, 500}]; s Position[Partition[PrimeOmega[Range[500]],2,1],?(#[[1]]==#[[2]]-2&),1,Heads-> False]//Flatten (* _Harvey P. Dale, Jul 04 2021 *)