cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335657 Numbers whose prime factors (including repetitions) sum to an odd number.

Original entry on oeis.org

3, 5, 6, 7, 10, 11, 12, 13, 14, 17, 19, 20, 22, 23, 24, 26, 27, 28, 29, 31, 34, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 52, 53, 54, 56, 58, 59, 61, 62, 63, 67, 68, 71, 73, 74, 75, 76, 79, 80, 82, 83, 86, 88, 89, 90, 92, 94, 96, 97, 99, 101, 103, 104, 105, 106, 107, 108, 109, 112, 113, 116, 117, 118, 122, 124, 125
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jul 09 2020

Keywords

Comments

Every positive integer, m, can be written uniquely as a product of primes (A000040). Rewrite with addition substituted for multiplication. m is in the sequence if and only if the result, which is A001414(m), is odd.

Examples

			12 = 2 * 2 * 3 (where the factors are prime numbers). Substituting addition for multiplication we get 2 + 2 + 3 = 7, which is odd. So 12 is in the sequence.
50 = 2 * 5 * 5. Substituting addition for multiplication we get 2 + 5 + 5 = 12, which is not odd. So 50 is not in the sequence.
1, written as a product of primes, is the empty product (1 has zero prime factors). Substituting addition for multiplication gives the empty sum, which evaluates as 0, which is even, not odd. So 1 is not in the sequence.
		

Crossrefs

Positions of odd numbers in A001414.
Complement of A036349.
Cf. A000040.

Programs

  • Mathematica
    Select[Range[2, 125], OddQ[Plus @@ Times @@@ FactorInteger[#]] &] (* Amiram Eldar, Jul 11 2020 *)
  • PARI
    isA335657(n) = (((n=factor(n))[, 1]~*n[, 2])%2); \\ After code in A001414.

Formula

Sum_{n>=1} 1/a(n)^s = (zeta(s) - ((2^s + 1)/(2^s - 1))*zeta(2*s)/zeta(s))/2 for Re(s)>1. - Amiram Eldar, Nov 02 2020