cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335672 Odd composite integers m such that A005248(m) == 3 (mod m).

Original entry on oeis.org

15, 105, 195, 231, 323, 377, 435, 665, 705, 1443, 1551, 1891, 2465, 2737, 2849, 3289, 3689, 3745, 3827, 4181, 4465, 4879, 5655, 5777, 6479, 6601, 6721, 7055, 7743, 8149, 9879, 10815, 10877, 11305, 11395, 11663, 12935, 13201, 13981, 15251, 15301, 17119, 17261, 17711, 18407, 18915, 19043, 20999
Offset: 1

Views

Author

Ovidiu Bagdasar, Jun 17 2020

Keywords

Comments

If p is a prime, then A005248(p)==3 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=3, b=1, V(n) recovers A005248(n) (bisection of Fibonacci numbers).

Examples

			15 is the first odd composite integer for which A005248(15)=18604984==3 (mod 15).
		

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A005248, A335669 (a=3,b=-1), A335673 (a=4,b=1), A335674 (a=5,b=1).

Programs

  • Mathematica
    Select[Range[3, 10000, 2], CompositeQ[#] && Divisible[LucasL[2#] - 3, #] &] (* Amiram Eldar, Jun 18 2020 *)