A274691 Number of odd entries in the character table of the symmetric group S_n.
1, 1, 4, 7, 19, 33, 77, 135, 218, 392, 798, 1312, 2381, 4107, 6639, 11722, 15869, 26333, 45115, 69168, 106213, 170710, 244042, 384991, 592859, 895944, 1326012, 2055454, 2884762, 4466493, 6553384, 9798596, 13336991, 20192347, 28680574, 41695293, 59766105, 86344867
Offset: 0
Keywords
Examples
For n = 2, all four character values are 1 or -1, so a(2) = 4.
Links
- Hugo Pfoertner, Table of n, a(n) for n = 0..76
- Alexander R. Miller, On parity and characters of symmetric groups, preprint.
- Alexander R. Miller, On parity and characters of symmetric groups, J. Combin. Theory Ser. A 162 (2019), 231-240. Gives terms for n <= 76.
Programs
-
Maple
with(combinat): a:= n-> add(`if`(i[]::odd, 1, 0), i=entries(character(n))): seq(a(n), n=0..15); # Alois P. Heinz, Jul 10 2016
Extensions
More terms from Alois P. Heinz, Jul 10 2016
Further terms from Miller (2019) added by N. J. A. Sloane, Jul 07 2020