cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335711 The number of free polyominoes of width 2 and height n.

Original entry on oeis.org

2, 6, 12, 30, 65, 158, 362, 875, 2064, 4984, 11914, 28764, 69155, 166956, 402372, 971413, 2343518, 5657754, 13654968, 32966010, 79577189, 192116330, 463786190, 1119678911, 2703086892, 6525829036, 15754607062, 38034986040, 91824246215, 221683340568, 535190123592
Offset: 2

Views

Author

R. J. Mathar, Jun 18 2020

Keywords

Comments

The second column of A268371.

Examples

			a(2)=2, bounding box 2 X 2, counts the L-shaped 3-omino and the full block 4-omino.
a(3)=6, bounding box 2 X 3, counts three 4-ominoes, two 5-omioes, and the full 2 X 3 block 6-omino.
a(4)=12, bounding box 2 X 4, counts three 5-ominoes, six 6-ominoes, two 7-ominoes, and the full 2 X 4 block 8-omino.
		

Crossrefs

Cf. A268371, A107769 (asymmetric), A005409 (C_2 symmetry and higher), A352720 (width 2 and size n).

Formula

Conjecture: a(n) = A107769(n-1) + A005409(floor((n+3)/2)).
Conjectures from Colin Barker, Jun 24 2020: (Start)
G.f.: x^2*(2 - 8*x^2 + 2*x^3 - x^4 + x^5 + x^6) / ((1 - x)*(1 - 2*x - x^2)*(1 - 2*x^2 - x^4)).
a(n) = 3*a(n-1) + a(n-2) - 7*a(n-3) + 3*a(n-4) - a(n-5) + a(n-6) + a(n-7) for n>8.
(End)
a(n) = (2*r(n) + 2*m(n) + A078057(n) + 1) / 4, where r(n) = A078057(floor((n-1)/2) - 1)/2, and m(n) = A078057(floor((n+1)/2) - 3)/2. - John Mason, Feb 28 2022

Extensions

a(12)-a(20) from Jean-Luc Manguin, Jun 23 2020
a(21)-a(28) from John Mason, Feb 27 2022
a(29)-a(32) from John Mason, Feb 28 2022