A335729 Number of "coprime" pairs of binary trees with n carets (see comments).
1, 2, 10, 68, 546, 4872, 46782, 474180, 5010456, 54721224, 613912182, 7042779996, 82329308040, 978034001472
Offset: 1
Examples
A coprime tree-pair with 5 carets: . . / \ / \ / \ \ / \ / / \ \ / \ \ / / \ \ \ / \ \ \ / / \ \ \ \ / \ \ \ / \ 1 2 3 4 5 6 1 2 3 4 5 6 A non-coprime tree-pair (both have a subtree on leaves 1-2-3-4): . . / \ / \ / \ \ / \ / \ \ \ / \ \ / \ \ \ / / \ \ / \ / \ \ \ / / \ \ / \ 1 2 3 4 5 6 1 2 3 4 5 6 Below we will represent a binary tree by a bracketing of the leaf labels 1 through n + 1 (a vertex of an associahedron). A tree is represented by a balanced string, and its left and right child subtrees are represented by two maximal balanced proper substrings, in order. For n = 2, the a(2) = 2 coprime tree-pairs are: ([[12]3], [1[23]]), ([1[23]], [[12]3]). For n = 3, the a(3) = 10 coprime tree-pairs are: ([1[2[34]]], [[1[23]]4]), ([1[2[34]]], [[[12]3]4]), ([1[[23]4]], [[12][34]]), ([1[[23]4]], [[[12]3]4]), ([[12][34]], [1[[23]4]]), ([[12][34]], [[1[23]]4]), ([[1[23]]4], [1[2[34]]]), ([[1[23]]4], [[12][34]]), ([[[12]3]4], [1[2[34]]]), ([[[12]3]4], [1[[23]4]]).
Links
- S. Cleary and R. Maio, Counting difficult tree pairs with respect to the rotation distance problem, arXiv:2001.06407 [cs.DS], 2020.
Comments