A335756 A cup filling problem starting with 2 empty cups of sizes 3 and n, where a(n) is the number of unreachable states (see details in comments).
2, 0, 2, 12, 6, 8, 22, 12, 14, 32, 18, 20, 42, 24, 26, 52, 30, 32, 62, 36, 38, 72, 42, 44, 82, 48, 50, 92, 54, 56, 102, 60, 62, 112, 66, 68, 122, 72, 74, 132, 78, 80, 142, 84, 86, 152, 90, 92, 162, 96, 98, 172, 102, 104, 182, 108, 110, 192, 114, 116, 202, 120, 122, 212, 126, 128, 222
Offset: 0
Examples
a(4) = 6; for a(4) we have one cup that can hold 3 units of water and another cup that can hold n = 4 units. Starting with empty cups at (0,0), there are fourteen states that can be reached using the given operations. For example, the state (3,2) can be obtained with the sequence (0,0)->(0,4)->(3,1)->(0,1)->(1,0)->(1,4)->(3,2) by the operations F-T-P-T-F-T. However, there are six states (1,1), (2,1), (1,2), (2,2), (1,3) and (2,3) that cannot be obtained from the three operations. So a(4) = 6.
References
- B. W. Jackson and D. Thoro, Applied Combinatorics with Problem Solving. Addison-Wesley, Reading, MA, 1990, Chap. 1, pp. 5-6.
Programs
-
Magma
[2*(n-1)*Sign(n mod 3)+(10*Floor(n/3)+2)*(1-Sign(n mod 3)) : n in [0..100]];
-
Mathematica
Array[2 #2 (#1 - 1) + (10 Floor[#1/3] + 2)*(1 - #2) & @@ {#, Sign@ Mod[#, 3]} &, 67, 0] (* Michael De Vlieger, Jun 28 2020 *)
Formula
a(n) = 2*(n-1)*sign(n mod 3) + (10*floor(n/3)+2)*(1-sign(n mod 3)).
Conjectures from Colin Barker, Jun 21 2020: (Start)
G.f.: 2*(1 + x^2 + 4*x^3 + 3*x^4 + 2*x^5) / ((1 - x)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-3) - a(n-6) for n > 5.
(End)
Comments