cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335815 Decimal expansion of Sum_{n>=1} 1/z(n)^4 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 0, 3, 7, 1, 7, 2, 5, 9, 9, 2, 8, 5, 2, 6, 9, 6, 8, 6, 1, 6, 4, 8, 6, 6, 2, 6, 2, 4, 7, 1, 7, 4, 0, 5, 7, 8, 4, 5, 3, 6, 5, 0, 8, 8, 9, 7, 3, 0, 0, 8, 3, 2, 1, 3, 5, 7, 5, 5, 0, 6, 3, 7, 1, 8, 4, 6, 1, 3, 3, 2, 9, 8, 8, 4, 5, 7, 2, 8, 1, 3, 7, 2, 9, 7, 6, 0, 3, 5, 7, 2, 3, 3, 7, 4, 2, 4, 2, 9, 6, 0, 2, 8, 3, 7, 0, 0
Offset: 0

Views

Author

Artur Jasinski, Jun 25 2020

Keywords

Comments

Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727097...; see A333360.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992852...; this sequence.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886995...; see A335814.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.

Examples

			0.0000371725992852696861648662624717405784536508897300...
		

Crossrefs

Programs

  • Mathematica
    Join[{0,0,0,0},RealDigits[N[-1/12*(D[Log[Zeta[x]],{x,4}]/. x -> 1/2) - 1/24 Pi^4 -(Zeta[4, 1/4] - Zeta[4, 3/4])/64 + 16, 105]][[1]]]

Formula

Equals 16-Pi^4/24+(Zeta[4,3/4]-Zeta[4,1/4])/64-(Log[Zeta[x]]''''[1/2])/24