cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A335516 Number of normal patterns contiguously matched by the prime indices of n in increasing or decreasing order, counting multiplicity.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 4, 5, 2, 4, 2, 6, 3, 3, 3, 7, 2, 3, 3, 7, 2, 4, 2, 5, 5, 3, 2, 9, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 7, 2, 3, 5, 7, 3, 4, 2, 5, 3, 4, 2, 10, 2, 3, 5, 5, 3, 4, 2, 9, 5, 3, 2, 7, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2020

Keywords

Comments

First differs from A181796 at a(180) = 9, A181796(180) = 10.
First differs from A335549 at a(90) = 7, A335549(90) = 8.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to contiguously match a pattern P if there is a contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) contiguously matches (1,1,2) and (2,1,1) but not (2,1,2), (1,2,1), (1,2,2), or (2,2,1).

Examples

			The a(n) patterns for n = 2, 30, 12, 60, 120, 540, 1500:
  ()   ()     ()     ()      ()       ()        ()
  (1)  (1)    (1)    (1)     (1)      (1)       (1)
       (12)   (11)   (11)    (11)     (11)      (11)
       (123)  (12)   (12)    (12)     (12)      (12)
              (112)  (112)   (111)    (111)     (111)
                     (123)   (112)    (112)     (112)
                     (1123)  (123)    (122)     (122)
                             (1112)   (1112)    (123)
                             (1123)   (1122)    (1123)
                             (11123)  (1222)    (1222)
                                      (11222)   (1233)
                                      (12223)   (11233)
                                      (112223)  (12333)
                                                (112333)
		

Crossrefs

The version for standard compositions is A335458.
The not necessarily contiguous version is A335549.
Patterns are counted by A000670 and ranked by A333217.
A number's prime indices are given in the rows of A112798.
Contiguous subsequences of standard compositions are A124771.
Contiguous sub-partitions of prime indices are counted by A335519.
Minimal avoided patterns of prime indices are counted by A335550.
Patterns contiguously matched by partitions are counted by A335838.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    Table[Length[Union[mstype/@ReplaceList[primeMS[n],{_,s___,_}:>{s}]]],{n,100}]

A335838 Number of normal patterns contiguously matched by integer partitions of n.

Original entry on oeis.org

1, 2, 5, 9, 18, 31, 54, 89, 145, 225, 349, 524, 778, 1137, 1645, 2330, 3293, 4586, 6341, 8676, 11794, 15880, 21292, 28298, 37419, 49163, 64301, 83576, 108191, 139326, 178699, 228183, 290286, 367760, 464374, 584146, 732481, 915468, 1140773, 1417115, 1755578
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2020

Keywords

Comments

We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to contiguously match a pattern P if there is a contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) contiguously matches (1,1,2) and (2,1,1) but not (2,1,2), (1,2,1), (1,2,2), or (2,2,1).

Examples

			The patterns contiguously matched by (3,2,2,1) are: (), (1), (1,1), (2,1), (2,1,1), (2,2,1), (3,2,2,1). Note that (3,2,1) is not contiguously matched. See A335837 for a larger example.
		

Crossrefs

The version for compositions in standard order is A335474.
The version for compositions is A335457.
The not necessarily contiguous version is A335837.
Patterns are counted by A000670 and ranked by A333217.
Patterns contiguously matched by prime indices are counted by A335516.
Contiguous divisors are counted by A335519.
Minimal patterns avoided by prime indices are counted by A335550.

Programs

  • Mathematica
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    Table[Sum[Length[Union[mstype/@ReplaceList[y,{_,s___,_}:>{s}]]],{y,IntegerPartitions[n]}],{n,0,8}]

Extensions

More terms from Jinyuan Wang, Jun 27 2020

A335550 Number of minimal normal patterns avoided by the prime indices of n in increasing or decreasing order, counting multiplicity.

Original entry on oeis.org

1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(12) = 4 minimal patterns avoiding (1,1,2) are: (2,1), (1,1,1), (1,2,2), (1,2,3).
The a(30) = 3 minimal patterns avoiding (1,2,3) are: (1,1), (2,1), (1,2,3,4).
		

Crossrefs

The version for standard compositions is A335465.
Patterns are counted by A000670.
Sum of prime indices is A056239.
Each number's prime indices are given in the rows of A112798.
Patterns are ranked by A333217.
Patterns matched by compositions are counted by A335456.
Patterns matched by prime indices are counted by A335549.
Patterns matched by partitions are counted by A335837.

Formula

It appears that for n > 1, a(n) = 3 if n is a power of a squarefree number (A072774), and a(n) = 4 otherwise.
Showing 1-3 of 3 results.