A335844 Squares visited by a knight moving on a square-spiral numbered board where the knight moves to the unvisited square containing the spiral number with the fewest divisors. In case of a tie it chooses the square with the lowest spiral number.
1, 10, 3, 6, 17, 4, 7, 2, 5, 8, 11, 14, 29, 86, 27, 12, 31, 94, 61, 16, 19, 22, 41, 106, 67, 18, 37, 62, 139, 98, 191, 142, 97, 34, 13, 58, 89, 178, 127, 52, 83, 26, 47, 118, 163, 76, 23, 20, 43, 70, 109, 74, 71, 44, 73, 158, 113, 214, 157, 274, 271, 212, 277, 346, 211
Offset: 1
Examples
The board is numbered with the square spiral: . 17--16--15--14--13 . | | . 18 5---4---3 12 29 | | | | | 19 6 1---2 11 28 | | | | 20 7---8---9--10 27 | | 21--22--23--24--25--26 . a(1) = 1, the starting square for the knight. a(2) = 10. The eight unvisited squares the knight can leap to from a(1) are numbered 10,12,14,16,18,20,22,24. Of these 10,14,22 have the minimum four divisors, and of those 10 is the smallest.
Links
- Scott R. Shannon, Table of n, a(n) for n = 1..529
- Scott R. Shannon, Image showing the 528 steps of the knight's path. A green dot marks the starting 1 square and a red dot the final square with number 33. The red dot is surrounded by eight blue dots to show the occupied neighboring squares. A yellow dots marks the smallest unvisited square with number 21.
Comments