A335852 Product of the exponents in the prime factorization of n in the ring of Gaussian integers.
1, 2, 1, 4, 1, 2, 1, 6, 2, 2, 1, 4, 1, 2, 1, 8, 1, 4, 1, 4, 1, 2, 1, 6, 4, 2, 3, 4, 1, 2, 1, 10, 1, 2, 1, 8, 1, 2, 1, 6, 1, 2, 1, 4, 2, 2, 1, 8, 2, 8, 1, 4, 1, 6, 1, 6, 1, 2, 1, 4, 1, 2, 2, 12, 1, 2, 1, 4, 1, 2, 1, 12, 1, 2, 4, 4, 1, 2, 1, 8, 4, 2, 1, 4, 1, 2
Offset: 1
Examples
a(2) = 2 since 2 = -i * (1 + i)^2 and the Gaussian prime (1 + i) has an exponent 2. a(100) = 16 since 100 = (1 + i)^4 * (1 + 2*i)^2 * (2 + i)^2 and 4*2*2 = 16.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Gaussian Integer.
- Wikipedia, Gaussian integer.
Programs
-
Mathematica
a[n_] := Times @@ FactorInteger[n, GaussianIntegers -> True][[All, 2]]; Array[a, 100]
-
PARI
a(n) = my (f = factor(n*I)); f[1,1] /= I; prod(k=1, #f~, f[k,2]); \\ Michel Marcus, Jun 28 2020
Formula
Multiplicative with a(p^e) = 2*e if p = 2, e if p == 3 (mod 4) and e^2 if p == 1 (mod 4).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (5/2) * Product_{p prime == 3 (mod 4)} (p^2 - p + 1)/(p*(p-1)) * Product_{p prime == 3 (mod 1)} (p^4 - 3*p^3 + 6*p^2 - 5*p + 1)/(p*(p-1)^3) = 3.73805905189... . - Amiram Eldar, Oct 15 2022
Comments