A335862 Decimal expansion of the zero x1 of the cubic polynomial x^3 - 2*x^2 - 10*x - 6.
4, 5, 1, 1, 4, 0, 4, 6, 6, 4, 2, 2, 6, 7, 5, 8, 1, 2, 3, 3, 3, 9, 2, 2, 1, 4, 9, 6, 8, 1, 3, 1, 6, 9, 5, 7, 4, 0, 2, 1, 8, 4, 3, 6, 1, 6, 4, 5, 0, 8, 8, 5, 7, 4, 6, 3, 5, 1, 7, 4, 8, 6, 8, 6, 1, 2, 7, 9, 5, 8, 3, 4, 4, 8, 2, 1, 6, 4, 9, 2, 5, 1, 5, 8, 9, 6, 7, 5, 8, 2, 7, 1, 7, 4, 3, 2, 5, 5, 3, 3
Offset: 1
Examples
x1 = 4.5114046642267581233392214968131695740218436164...
Links
- Wolfdieter Lang, A list of representative simple difference sets of the Singer type for small orders m, Karlsruher Institut für Technologie (Karlsruhe, Germany 2020).
- Eric Weisstein's World of Mathematics, Fano plane
- Eric Weisstein's World of Mathematics, Heawood graph
- Wikipedia, Fano plane
- Wikipedia, Heawood graph
Programs
-
Mathematica
With[{k = 3 Sqrt[3] Sqrt[269] I}, First@ RealDigits[Re[(1/3) (2 + (179 + k)^(1/3) + (179 - k)^(1/3))], 10, 100]] (* Michael De Vlieger, Nov 17 2020 *)
Formula
x1 = (1/3)*(2 + (179 + 3*sqrt(3)*sqrt(269)*i)^(1/3) + ( 179 - 3*sqrt(3)*sqrt(269)*i)^(1/3)), where i is the imaginary unit.
Comments