A335893 Primitive triples for integer-sided triangles whose angles A < B < C are in arithmetic progression.
3, 7, 8, 5, 7, 8, 7, 13, 15, 8, 13, 15, 5, 19, 21, 16, 19, 21, 11, 31, 35, 24, 31, 35, 7, 37, 40, 33, 37, 40, 13, 43, 48, 35, 43, 48, 16, 49, 55, 39, 49, 55, 9, 61, 65, 56, 61, 65, 32, 67, 77, 45, 67, 77, 17, 73, 80, 63, 73, 80, 40, 79, 91, 51, 79, 91, 11, 91, 96
Offset: 1
Examples
(3, 7, 8) is a triple for this sequence because from law of cosines (see link), cos(A) = (7^2 + 8^2 - 3^2)/(2*7*8) = 13/14, cos(B) = (8^2 + 3^2 - 7^2)/(2*8*3) = 1/2 and cos(C) = (3^2 + 7^2 - 8^2)/(2*3*7) = -1/7; then, (A+C)/2 = ( arccos(13/14) + arccos(-1/7) )/2 = Pi/3 = B. Also, arccos(13/14) ~ 21.787 degrees, arccos(1/2) = 60 degrees, arccos(-1/7) ~ 98.213 degrees, so B-A = C-B ~ 38.213 degrees, hence (A, B, C) are in arithmetic progression. 5^2 - 5*8 + 8^2 = 7^2, hence (5, 7, 8) is another triple for triangle whose angles A < B < C are in arithmetic progression.
References
- V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-298 p. 124, André Desvigne.
Links
- Bill Sands, Indian team selection test 2007, question 5, Crux Mathematicorum, Vol. 36, No. 5 (2010), p. 278.
- Eric Weisstein's World of Mathematics, Law of Cosines.
- Eric Weisstein's World of Mathematics, Law of Sines.
- Wikipedia, Eisenstein triple.
- Index to sequences related to Olympiads.
Crossrefs
Programs
-
Maple
for b from 3 to 250 by 2 do for c from b+1 to 6*b/5 do a := (c - sqrt(4*b^2-3*c^2))/2; if gcd(a,b)=1 and issqr(4*b^2-3*c^2) then print(a,b,c,c-a,b,c); end if; end do; end do;
-
PARI
lista(nn) = {forstep(b=1, nn, 2, for(c=b+1, 6*b\5, if (issquare(d=4*b^2 - 3*c^2), my(a = (c - sqrtint(d))/2); if ((denominator(a)==1) && (gcd(a, b) == 1), print(a, ", ", b, ", ", c, ", "); print(c-a, ", ", b, ", ", c, ", ");););););} \\ Michel Marcus, Jul 15 2020
Comments