A335895 Middle side of primitive triples, in nondecreasing order, for integer-sided triangles whose angles A < B < C are in arithmetic progression.
7, 7, 13, 13, 19, 19, 31, 31, 37, 37, 43, 43, 49, 49, 61, 61, 67, 67, 73, 73, 79, 79, 91, 91, 91, 91, 97, 97, 103, 103, 109, 109, 127, 127, 133, 133, 133, 133, 139, 139, 151, 151, 157, 157, 163, 163, 169, 169, 181, 181, 193, 193, 199, 199, 211, 211, 217, 217, 217, 217
Offset: 1
Keywords
Examples
b = 7 appears twice because A121940(1) = 7 and: 7^2 = 3^2 - 3*8 + 8^2, with triple (3, 7, 8), 7^2 = 5^2 - 5*8 + 8^2, with triple (5, 7, 8). b = 91 appears four times because A121940(2) = 91 and: 91^2 = 11^2 - 11*96 + 96^2, with triple (11, 91, 96), 91^2 = 85^2 - 85*96 + 96^2, with triple (85, 91, 96), 91^2 = 19^2 - 19*99 + 99^2, with triple (19, 91, 99), 91^2 = 80^2 - 80*99 + 99^2, with triple (80, 91, 99). b = 1729 appears eight times because A121940(3) = 1729 and the triples of these 2^3 = 8 triangles are (96, 1729, 1775), (1679, 1729, 1775), (249, 1729, 1840), (1591, 1729, 1840), (656, 1729, 1961), (1305, 1729, 1961), (799, 1729, 1984), (1185, 1729, 1984).
Crossrefs
Programs
-
Maple
for b from 3 to 100 by 2 do for a from 1 to b-1 do c := (a+ sqrt(4*b^2-3*a^2))/2; if igcd(a, b) = 1 and issqr(4*b^2-3*a^2) then print(b); end if; end do; end do;
-
PARI
lista(nn) = {forstep(b=1, nn, 2, for(a=1, b-1, if (gcd(a, b) == 1, my(d = 4*b^2 - 3*a^2); if (issquare(d), my(c = (a + sqrtint(d))/2); if (denominator(c)==1, print1(b, ", "));););););} \\ Michel Marcus, Jul 05 2020
Formula
a(n) = A335893(n, 2).
b is such that b^2 = a^2 - a*c + c^2 with gcd(a,b) = 1 and a < b.
Comments