A335896 Largest side of integer-sided primitive triangles whose angles A < B < C are in arithmetic order.
8, 8, 15, 15, 21, 21, 35, 35, 40, 40, 48, 48, 55, 55, 65, 65, 77, 77, 80, 80, 91, 91, 96, 96, 99, 99, 112, 112, 117, 117, 119, 119, 133, 133, 143, 143, 153, 153, 160, 160, 171, 171, 168, 168, 187, 187, 176, 176, 209, 209, 207, 207, 221, 221, 224, 224, 225, 225
Offset: 1
Keywords
Examples
c = 8 appears twice because: 7^2 = 3^2 - 3*8 + 8^2, with triple (3, 7, 8), 7^2 = 5^2 - 5*8 + 8^2, with triple (5, 7, 8). c = 96 and c = 99 each appear twice associated with b = 91 because: 91^2 = 11^2 - 11*96 + 96^2, with triple (11, 91, 96), 91^2 = 85^2 - 85*96 + 96^2, with triple (85, 91, 96), 91^2 = 19^2 - 19*99 + 99^2, with triple (19, 91, 99), 91^2 = 80^2 - 80*99 + 99^2, with triple (80, 91, 99).
References
- V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-298 p. 124, André Desvigne.
Links
- Wikipedia, Law of sines.
Crossrefs
Programs
-
Maple
for b from 3 to 250 by 2 do for c from b+1 to 6*b/5 do a := (c - sqrt(4*b^2-3*c^2))/2; if gcd(a,b)=1 and issqr(4*b^2-3*c^2) then print(c,c); end if; end do; end do;
-
PARI
lista(nn) = {forstep(b=1, nn, 2, for(c=b+1, 6*b\5, if (issquare(d=4*b^2 - 3*c^2), my(a = (c - sqrtint(d))/2); if ((denominator(a)==1) && (gcd(a, b) == 1), print(c, ", ", c, ", ");););););} \\ Michel Marcus, Jul 15 2020
Formula
a(n) = A335893(n, 3).
c satisfies c^2 - a*c + a^2 - b^2 = 0 with gcd(a,b) = 1 and a < b.
Comments