A335902 Composite numbers c such that phi(c)/phi(mind(c)) mod phi(c)/phi(maxd(c)) <> 0, where phi is the Euler function, mind(c) is the smallest nontrivial divisor of c, maxd(c) is the largest nontrivial divisor of c.
35, 55, 77, 95, 115, 119, 143, 155, 161, 187, 203, 209, 215, 221, 235, 245, 247, 253, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 391, 395, 403, 407, 413, 415, 437, 473, 493, 497, 515, 517, 527, 533, 535, 551, 559, 581, 583, 589, 605, 611, 623, 629, 635, 649
Offset: 1
Keywords
Programs
-
MATLAB
n=500; % gives all terms of the sequence not exceeding n A=[]; for i=1:n dn=divisors(i); if size(dn,2)>2 && mod (totient(i)/totient(dn(2)),totient(i)/totient(dn(end-1)))~=0 A=[A i]; end end function [res] = totient(n) res=0; for i=1:n if gcd(i,n)==1 res=res+1; end end end
-
PARI
isok(c) = if ((c>1) && !isprime(c), my(t=eulerphi(c), d=divisors(c)); ((t/eulerphi(d[2])) % (t/eulerphi(d[#d-1]))) != 0); \\ Michel Marcus, Dec 28 2020
Comments