cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335902 Composite numbers c such that phi(c)/phi(mind(c)) mod phi(c)/phi(maxd(c)) <> 0, where phi is the Euler function, mind(c) is the smallest nontrivial divisor of c, maxd(c) is the largest nontrivial divisor of c.

Original entry on oeis.org

35, 55, 77, 95, 115, 119, 143, 155, 161, 187, 203, 209, 215, 221, 235, 245, 247, 253, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 391, 395, 403, 407, 413, 415, 437, 473, 493, 497, 515, 517, 527, 533, 535, 551, 559, 581, 583, 589, 605, 611, 623, 629, 635, 649
Offset: 1

Views

Author

Maxim Karimov, Dec 28 2020

Keywords

Comments

This equivalence criterion splits a set of composite numbers into two classes and can be used to count certain combinatorial objects.

Crossrefs

Programs

  • MATLAB
    n=500; % gives all terms of the sequence not exceeding n
    A=[];
    for i=1:n
        dn=divisors(i);
        if size(dn,2)>2 && mod (totient(i)/totient(dn(2)),totient(i)/totient(dn(end-1)))~=0
            A=[A i];
        end
    end
    function [res] = totient(n)
    res=0;
        for i=1:n
            if gcd(i,n)==1
                res=res+1;
            end
        end
    end
    
  • PARI
    isok(c) = if ((c>1) && !isprime(c), my(t=eulerphi(c), d=divisors(c)); ((t/eulerphi(d[2])) % (t/eulerphi(d[#d-1]))) != 0); \\ Michel Marcus, Dec 28 2020