A335920 Number T(n,k) of binary search trees of height k having n internal nodes; triangle T(n,k), k>=0, k<=n<=2^k-1, read by columns.
1, 1, 2, 1, 4, 6, 6, 4, 1, 8, 20, 40, 68, 94, 114, 116, 94, 60, 28, 8, 1, 16, 56, 152, 376, 844, 1744, 3340, 5976, 10040, 15856, 23460, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1, 32, 144, 480, 1440, 4056
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1; 2; 1, 4; 6, 8; 6, 20, 16; 4, 40, 56, 32; 1, 68, 152, 144, 64; 94, 376, 480, 352, 128; 114, 844, 1440, 1376, 832, 256; 116, 1744, 4056, 4736, 3712, 1920, 512; ...
Links
Crossrefs
Programs
-
Maple
b:= proc(n, h) option remember; `if`(n=0, 1, `if`(n<2^h, add(b(j-1, h-1)*b(n-j, h-1), j=1..n), 0)) end: T:= (n, k)-> b(n, k)-`if`(k>0, b(n, k-1), 0): seq(seq(T(n, k), n=k..2^k-1), k=0..6);
-
Mathematica
b[n_, h_] := b[n, h] = If[n == 0, 1, If[n < 2^h, Sum[b[j - 1, h - 1]*b[n - j, h - 1], {j, 1, n}], 0]]; T[n_, k_] := b[n, k] - If[k > 0, b[n, k - 1], 0]; Table[Table[T[n, k], {n, k, 2^k - 1}], {k, 0, 6}] // Flatten (* Jean-François Alcover, Feb 08 2021, after Alois P. Heinz *)
Comments