cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335920 Number T(n,k) of binary search trees of height k having n internal nodes; triangle T(n,k), k>=0, k<=n<=2^k-1, read by columns.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 6, 4, 1, 8, 20, 40, 68, 94, 114, 116, 94, 60, 28, 8, 1, 16, 56, 152, 376, 844, 1744, 3340, 5976, 10040, 15856, 23460, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1, 32, 144, 480, 1440, 4056
Offset: 0

Views

Author

Alois P. Heinz, Jun 29 2020

Keywords

Comments

Empty external nodes are counted in determining the height of a search tree.
T(n,k) is defined for n,k >= 0. The triangle contains only the positive terms. Terms not shown are zero.

Examples

			Triangle T(n,k) begins:
  1;
     1;
        2;
        1, 4;
           6,   8;
           6,  20,   16;
           4,  40,   56,   32;
           1,  68,  152,  144,   64;
               94,  376,  480,  352,  128;
              114,  844, 1440, 1376,  832,  256;
              116, 1744, 4056, 4736, 3712, 1920, 512;
  ...
		

Crossrefs

Row sums give A000108.
Column sums give A001699.
Main diagonal gives A011782.
T(n+3,n+2) gives A014480.
T(n,max(0,A000523(n)+1)) = A328349(n).
Cf. A073345, A076615, A195581, A244108, A335919 (the same read by rows), A335921, A335922.

Programs

  • Maple
    b:= proc(n, h) option remember; `if`(n=0, 1, `if`(n<2^h,
          add(b(j-1, h-1)*b(n-j, h-1), j=1..n), 0))
        end:
    T:= (n, k)-> b(n, k)-`if`(k>0, b(n, k-1), 0):
    seq(seq(T(n, k), n=k..2^k-1), k=0..6);
  • Mathematica
    b[n_, h_] := b[n, h] = If[n == 0, 1, If[n < 2^h,
         Sum[b[j - 1, h - 1]*b[n - j, h - 1], {j, 1, n}], 0]];
    T[n_, k_] := b[n, k] - If[k > 0, b[n, k - 1], 0];
    Table[Table[T[n, k], {n, k, 2^k - 1}], {k, 0, 6}] // Flatten (* Jean-François Alcover, Feb 08 2021, after Alois P. Heinz *)

Formula

Sum_{k=0..n} k * T(n,k) = A335921(n).
Sum_{n=k..2^k-1} n * T(n,k) = A335922(k).