cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335942 Number of compositions of n such that the set s of parts and multiplicities satisfies s = {1..max(s)}.

Original entry on oeis.org

1, 1, 2, 2, 3, 12, 12, 32, 51, 144, 191, 486, 679, 1487, 3149, 5909, 11637, 18630, 36928, 76431, 141009, 264784, 535057, 921105, 1774022, 3388054, 6303519, 12255373, 22527578, 43358822, 77695383, 145170435, 264722429, 527776034, 936538336, 1807344134
Offset: 0

Views

Author

Alois P. Heinz, Jun 30 2020

Keywords

Examples

			a(4) = 3: 211, 121, 112.
a(5) = 12: 23, 32, 113, 122, 131, 212, 221, 311, 1112, 1121, 1211, 2111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, s, p) option remember;
         `if`(n=0, `if`(s={$0..max(s)}, p!, 0), `if`(i<1, 0, add(
          b(n-i*j, i-1, {s[], j, `if`(j=0, 0, i)}, p+j)/j!, j=0..n/i)))
        end:
    a:= n-> b(n, floor((sqrt(1+8*(n+1))-1)/2), {0}, 0):
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, i_, s_, p_] := b[n, i, s, p] =
         If[n == 0, If[s == Range[0, Max[s]], p!, 0], If[i < 1, 0, Sum[
         b[n - i*j, i - 1, Union@Flatten@{s, j, If[j == 0, 0, i]}, p + j]/j!,
         {j, 0, n/i}]]];
    a[n_] := b[n, Floor[(Sqrt[1 + 8*(n + 1)] - 1)/2], {0}, 0];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 30 2022, after Alois P. Heinz *)