A335947 T(n, k) = numerator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n.
1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 7, 0, -1, 0, 1, 0, 7, 0, -5, 0, 1, -31, 0, 7, 0, -5, 0, 1, 0, -31, 0, 49, 0, -7, 0, 1, 127, 0, -31, 0, 49, 0, -7, 0, 1, 0, 381, 0, -31, 0, 147, 0, -3, 0, 1, -2555, 0, 381, 0, -155, 0, 49, 0, -15, 0, 1
Offset: 0
Examples
First few polynomials are: b_0(x) = 1; b_1(x) = x; b_2(x) = -(1/12) + x^2; b_3(x) = -(1/4)*x + x^3; b_4(x) = (7/240) - (1/2)*x^2 + x^4; b_5(x) = (7/48)*x - (5/6)*x^3 + x^5; b_6(x) = -(31/1344) + (7/16)*x^2 - (5/4)*x^4 + x^6; Normalized by A335949: b_0(x) = 1; b_1(x) = x; b_2(x) = (-1 + 12*x^2) / 12; b_3(x) = (-x + 4*x^3) / 4; b_4(x) = (7 - 120*x^2 + 240*x^4) / 240; b_5(x) = (7*x - 40*x^3 + 48*x^5) / 48; b_6(x) = (-31 + 588*x^2 - 1680*x^4 + 1344*x^6) / 1344; b_7(x) = (-31*x + 196*x^3 - 336*x^5 + 192*x^7) / 192; Triangle starts: [0] 1; [1] 0, 1; [2] -1, 0, 1; [3] 0, -1, 0, 1; [4] 7, 0, -1, 0, 1; [5] 0, 7, 0, -5, 0, 1; [6] -31, 0, 7, 0, -5, 0, 1; [7] 0, -31, 0, 49, 0, -7, 0, 1; [8] 127, 0, -31, 0, 49, 0, -7, 0, 1; [9] 0, 381, 0, -31, 0, 147, 0, -3, 0, 1;
Comments