A335949
a(n) = denominator(b_n(x)), where b_n(x) are the polynomials defined in A335947.
Original entry on oeis.org
1, 1, 12, 4, 240, 48, 1344, 192, 3840, 1280, 33792, 3072, 5591040, 430080, 245760, 49152, 16711680, 983040, 522977280, 27525120, 1211105280, 173015040, 1447034880, 62914560, 22900899840, 4580179968, 1409286144, 469762048, 116769423360, 4026531840, 7689065201664
Offset: 0
A335948
T(n, k) = denominator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 240, 1, 2, 1, 1, 1, 48, 1, 6, 1, 1, 1344, 1, 16, 1, 4, 1, 1, 1, 192, 1, 48, 1, 4, 1, 1, 3840, 1, 48, 1, 24, 1, 3, 1, 1, 1, 1280, 1, 16, 1, 40, 1, 1, 1, 1, 33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1, 1, 3072, 1, 256, 1, 32, 1, 8, 1, 12, 1, 1
Offset: 0
First few polynomials are:
b_0(x) = 1;
b_1(x) = x;
b_2(x) = -(1/12) + x^2;
b_3(x) = -(1/4)*x + x^3;
b_4(x) = (7/240) - (1/2)*x^2 + x^4;
b_5(x) = (7/48)*x - (5/6)*x^3 + x^5;
b_6(x) = -(31/1344) + (7/16)*x^2 - (5/4)*x^4 + x^6;
Triangle starts:
1;
1, 1;
12, 1, 1;
1, 4, 1, 1;
240, 1, 2, 1, 1;
1, 48, 1, 6, 1, 1;
1344, 1, 16, 1, 4, 1, 1;
1, 192, 1, 48, 1, 4, 1, 1;
3840, 1, 48, 1, 24, 1, 3, 1, 1;
1, 1280, 1, 16, 1, 40, 1, 1, 1, 1;
33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1;
Showing 1-2 of 2 results.
Comments