A335951 Triangle read by rows. The numerators of the coefficients of the Faulhaber polynomials. T(n,k) for n >= 0 and 0 <= k <= n.
1, 0, 1, 0, 0, 1, 0, 0, -1, 4, 0, 0, 1, -4, 6, 0, 0, -3, 12, -20, 16, 0, 0, 5, -20, 34, -32, 16, 0, 0, -691, 2764, -4720, 4592, -2800, 960, 0, 0, 105, -420, 718, -704, 448, -192, 48, 0, 0, -10851, 43404, -74220, 72912, -46880, 21120, -6720, 1280
Offset: 0
Examples
The first few polynomials are: [0] 1; [1] x; [2] x^2; [3] (4*x - 1)*x^2*(1/3); [4] (6*x^2 - 4*x + 1)*x^2*(1/3); [5] (16*x^3 - 20*x^2 + 12*x - 3)*x^2*(1/5); [6] (16*x^4 - 32*x^3 + 34*x^2 - 20*x + 5)*x^2*(1/3); [7] (960*x^5 - 2800*x^4 + 4592*x^3 - 4720*x^2 + 2764*x - 691)*x^2*(1/105); [8] (48*x^6 - 192*x^5 + 448*x^4 - 704*x^3 + 718*x^2 - 420*x + 105)*x^2*(1/3); [9] (1280*x^7-6720*x^6+21120*x^5-46880*x^4+72912*x^3-74220*x^2+43404*x-10851)*x^2*(1/45); Triangle starts: [0] 1; [1] 0, 1; [2] 0, 0, 1; [3] 0, 0, -1, 4; [4] 0, 0, 1, -4, 6; [5] 0, 0, -3, 12, -20, 16; [6] 0, 0, 5, -20, 34, -32, 16; [7] 0, 0, -691, 2764, -4720, 4592, -2800, 960; [8] 0, 0, 105, -420, 718, -704, 448, -192, 48; [9] 0, 0, -10851, 43404, -74220, 72912, -46880, 21120, -6720, 1280;
References
- Johann Faulhaber, Academia Algebra. Darinnen die miraculosische Inventiones zu den höchsten Cossen weiters continuirt und profitiert werden. Johann Ulrich Schönigs, Augsburg, 1631.
Links
- C. G. J. Jacobi, De usu legitimo formulae summatoriae Maclaurinianae, J. Reine Angew. Math., 12 (1834), 263-272.
- Donald E. Knuth, Johann Faulhaber and sums of powers, arXiv:math/9207222 [math.CA], 1992; Math. Comp. 61 (1993), no. 203, 277-294.
- Peter Luschny, Illustrating the Faulhaber polynomials for n = 1..7.
Crossrefs
Programs
-
Maple
FaulhaberPolynomial := proc(n) if n = 0 then return 1 fi; expand((bernoulli(2*n, x+1) - bernoulli(2*n,1))/(2*n)); sort(simplify(expand(subs(x = (sqrt(8*x+1)-1)/2, %))), [x], ascending) end: Trow := n -> seq(coeff(numer(FaulhaberPolynomial(n)), x, k), k=0..n): seq(print(Trow(n)), n=0..9);
-
Python
from math import lcm from itertools import count, islice from sympy import simplify,sqrt,bernoulli from sympy.abc import x def A335951_T(n,k): z = simplify((bernoulli(2*n,(sqrt(8*x+1)+1)/2)-bernoulli(2*n,1))/(2*n)).as_poly().all_coeffs() return z[n-k]*lcm(*(d.q for d in z)) def A335951_gen(): # generator of terms yield from (A335951_T(n,k) for n in count(0) for k in range(n+1)) A335951_list = list(islice(A335951_gen(),20)) # Chai Wah Wu, May 16 2022
-
SageMath
def A335951Row(n): R.
= PolynomialRing(QQ) if n == 0: return [1] b = expand((bernoulli_polynomial(x + 1, 2*n) - bernoulli_polynomial(1, 2*n))/(2*n)) s = expand(b.subs(x = (sqrt(8*x+1)-1)/2)) return numerator(s).list() for n in range(10): print(A335951Row(n)) # Peter Luschny, May 17 2022
Formula
Let F_n(x) be the polynomial after substituting (sqrt(8*x + 1) - 1)/2 for x in b_n(x), where b_n(x) = (Bernoulli_{2*n}(x+1) - Bernoulli_{2*n}(1))/(2*n).
F_n(1) = 1 for all n >= 0.
T(n, k) = numerator([x^k] F_n(x)).
Comments