A335952
Denominators of the Faulhaber polynomials.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 3, 105, 3, 45, 105, 165, 45, 273, 7, 15, 231, 1785, 9, 25935, 105, 3465, 1155, 2415, 315, 16575, 429, 1485, 399, 435, 45, 465465, 2145, 8415, 41055, 525, 1485, 10555545, 57057, 585, 105, 268345, 19635, 18723705, 15015
Offset: 0
-
from math import lcm
from sympy import simplify, sqrt, bernoulli
from sympy.abc import x
def A335952(n): return lcm(*(d.q for d in simplify((bernoulli(2*n,(sqrt(8*x+1)+1)/2)-bernoulli(2*n,1))/(2*n)).as_poly().all_coeffs())) # Chai Wah Wu, May 17 2022
A354042
Triangle read by rows. The Faulhaber numbers. F(0, k) = 1 and otherwise F(n, k) = (n + 1)!*(-1)^(k+1)*Sum_{j=0..floor((k-1)/2)} C(2*k-2*j, k+1)*C(2*n+1, 2*j+1) * Bernoulli(2*n-2*j) / (k - j).
Original entry on oeis.org
1, 0, 1, 0, -1, 2, 0, 4, -8, 6, 0, -36, 72, -60, 24, 0, 600, -1200, 1020, -480, 120, 0, -16584, 33168, -28320, 13776, -4200, 720, 0, 705600, -1411200, 1206240, -591360, 188160, -40320, 5040, 0, -43751232, 87502464, -74813760, 36747648, -11813760, 2661120, -423360, 40320
Offset: 0
Triangle starts:
0: 1
1: 0, 1
2: 0, -1, 2
3: 0, 4, -8, 6
4: 0, -36, 72, -60, 24
5: 0, 600, -1200, 1020, -480, 120
6: 0, -16584, 33168, -28320, 13776, -4200, 720
7: 0, 705600, -1411200, 1206240, -591360, 188160, -40320, 5040
8: 0, -43751232, 87502464, -74813760, 36747648, -11813760, 2661120, -423360, 40320
.
Let n = 4 and m = 3, then S(2*n + 1, m) = S(9, 3) = 20196. Faulhaber's formula gives this as (0*12 + (-36)*144 + 72*1728 + (-60)*20736 + 24*248832) / (2*120).
-
F := (n, k) -> ifelse(n = 0, 1, (n + 1)!*(-1)^(k + 1)*add(binomial(2*k - 2*j, k + 1)*binomial(2*n + 1, 2*j + 1)*bernoulli(2*n - 2*j) / (k - j), j = 0..(k - 1)/2)): for n from 0 to 8 do seq(F(n, k), k = 0..n) od;
A385567
Triangle read by rows: T(n,k) is the numerator of A(n,k), such that A(n,k) satisfies the identity for sums of odd powers: Sum_{k=1..p} k^(2n-1) = 1/(2*n) * Sum_{k=0..n-1} A(n,k) * (p^2+p)^(n-k), for all integers p >= 1.
Original entry on oeis.org
1, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -4, 2, 0, -1, 1, -5, 3, -3, 0, 5, 1, -4, 17, -10, 5, 0, -691, 1, -35, 287, -118, 691, -691, 0, 7, 1, -8, 112, -352, 718, -280, 140, 0, -3617, 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 43867, 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, -174611
Offset: 0
Triangle begins:
---------------------------------------------------------------------------------
k = 0 1 2 3 4 5 6 7 8 9 10
---------------------------------------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 0, -1;
n=3: 1, -1, 0, 1;
n=4: 1, -4, 2, 0, -1;
n=5: 1, -5, 3, -3, 0, 5;
n=6: 1, -4, 17, -10, 5, 0, -691;
n=7: 1, -35, 287, -118, 691, -691, 0, 7;
n=8: 1, -8, 112, -352, 718, -280, 140, 0, -3617;
n=9: 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 43867;
n=10: 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, -174611;
...
- Donald E. Knuth, Johann Faulhaber and Sums of Powers, arXiv:9207222 [math.CA], 1992, see page 16.
- Petro Kolosov, Faulhaber's coefficients: Examples, GitHub, 2025.
- Petro Kolosov, Mathematica programs, GitHub, 2025.
-
FaulhaberCoefficient[n_, k_] := 0;
FaulhaberCoefficient[n_, k_] := (-1)^(n - k) * Sum[Binomial[2 n, n - k - j]* Binomial[n - k + j, j] * (n - k - j)/(n - k + j) * BernoulliB[n + k + j], {j, 0, n - k}] /; 0 <= k < n;
FaulhaberCoefficient[n_, k_] := BernoulliB[2 n] /; k == n;
Flatten[Table[Numerator[FaulhaberCoefficient[n, k]], {n, 0, 10}, {k, 0, n}]]
-
T(n,k) = numerator(if (k==n, bernfrac(2*n), if (kMichel Marcus, Aug 03 2025
A386728
Triangle read by rows: T(n,k) is the denominator of A(n,k), such that A(n,k) satisfies the identity for sums of odd powers: Sum_{k=1..p} k^(2n-1) = 1/(2*n) * Sum_{k=0..n-1} A(n,k) * (p^2+p)^(n-k), for all integers p >= 1.
Original entry on oeis.org
1, 1, 6, 1, 1, 30, 1, 2, 1, 42, 1, 3, 3, 1, 30, 1, 2, 1, 2, 1, 66, 1, 1, 2, 1, 1, 1, 2730, 1, 6, 15, 3, 15, 30, 1, 6, 1, 1, 3, 3, 3, 1, 1, 1, 510, 1, 2, 1, 1, 5, 2, 5, 10, 1, 798, 1, 3, 2, 7, 1, 3, 42, 21, 21, 1, 330, 1, 2, 3, 2, 1, 6, 15, 3, 5, 10, 1, 138, 1
Offset: 0
Triangle begins:
---------------------------------------------------------
k = 0 1 2 3 4 5 6 7 8 9 10
---------------------------------------------------------
n=0: 1;
n=1: 1, 6;
n=2: 1, 1, 30;
n=3: 1, 2, 1, 42;
n=4: 1, 3, 3, 1, 30;
n=5: 1, 2, 1, 2, 1, 66;
n=6: 1, 1, 2, 1, 1, 1, 2730;
n=7: 1, 6, 15, 3, 15, 30, 1, 6;
n=8: 1, 1, 3, 3, 3, 1, 1, 1, 510;
n=9: 1, 2, 1, 1, 5, 2, 5, 10, 1, 798;
n=10: 1, 3, 2, 7, 1, 3, 42, 21, 21, 1, 330;
...
- Donald E. Knuth, Johann Faulhaber and Sums of Powers, arXiv:9207222 [math.CA], 1992, see page 16.
- Petro Kolosov, Faulhaber's coefficients: Examples, GitHub, 2025.
- Petro Kolosov, Mathematica programs, GitHub, 2025.
-
FaulhaberCoefficient[n_, k_] := 0;
FaulhaberCoefficient[n_, k_] := (-1)^(n - k) * Sum[Binomial[2 n, n - k - j]* Binomial[n - k + j, j] * (n - k - j)/(n - k + j) * BernoulliB[n + k + j], {j, 0, n - k}] /; 0 <= k < n;
FaulhaberCoefficient[n_, k_] := BernoulliB[2 n] /; k == n;
Flatten[Table[Denominator[FaulhaberCoefficient[n, k]], {n, 0, 10}, {k, 0, n}]]
-
T(n,k) = denominator(if (k==n, bernfrac(2*n), if (kMichel Marcus, Aug 03 2025
Showing 1-4 of 4 results.
Comments