cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A335952 Denominators of the Faulhaber polynomials.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 3, 105, 3, 45, 105, 165, 45, 273, 7, 15, 231, 1785, 9, 25935, 105, 3465, 1155, 2415, 315, 16575, 429, 1485, 399, 435, 45, 465465, 2145, 8415, 41055, 525, 1485, 10555545, 57057, 585, 105, 268345, 19635, 18723705, 15015
Offset: 0

Views

Author

Peter Luschny, Jul 16 2020

Keywords

Comments

See A335951 for comments, programs and references.

Crossrefs

Cf. A335951 (numerators).

Programs

  • Python
    from math import lcm
    from sympy import simplify, sqrt, bernoulli
    from sympy.abc import x
    def A335952(n): return lcm(*(d.q for d in simplify((bernoulli(2*n,(sqrt(8*x+1)+1)/2)-bernoulli(2*n,1))/(2*n)).as_poly().all_coeffs())) # Chai Wah Wu, May 17 2022

A354042 Triangle read by rows. The Faulhaber numbers. F(0, k) = 1 and otherwise F(n, k) = (n + 1)!*(-1)^(k+1)*Sum_{j=0..floor((k-1)/2)} C(2*k-2*j, k+1)*C(2*n+1, 2*j+1) * Bernoulli(2*n-2*j) / (k - j).

Original entry on oeis.org

1, 0, 1, 0, -1, 2, 0, 4, -8, 6, 0, -36, 72, -60, 24, 0, 600, -1200, 1020, -480, 120, 0, -16584, 33168, -28320, 13776, -4200, 720, 0, 705600, -1411200, 1206240, -591360, 188160, -40320, 5040, 0, -43751232, 87502464, -74813760, 36747648, -11813760, 2661120, -423360, 40320
Offset: 0

Views

Author

Peter Luschny, May 17 2022

Keywords

Comments

I. Gessel and X. Viennot call the rational numbers F(n, k)/(n + 1)! 'Faulhaber numbers'. However, for our purposes it is more convenient to define the integers F(n, k). For the Faulhaber polynomials see A335951/A335952.
Let S(r, m) = Sum_{k=0..m} k^r, with 0^0 = 1 and S(0, m) = m + 1. Faulhaber's theorem (the sums of powers formula) is:
S(2*n+1, m) = (1/(n+1)!)*(1/2)*Sum_{k=0..n} F(n, k)*(m*(m + 1))^(k + 1).
Gessel and Viennot give two combinatorial interpretations for the Faulhaber numbers, for this see A354043.

Examples

			Triangle starts:
0: 1
1: 0,         1
2: 0,        -1,        2
3: 0,         4,       -8,         6
4: 0,       -36,       72,       -60,       24
5: 0,       600,    -1200,      1020,     -480,       120
6: 0,    -16584,    33168,    -28320,    13776,     -4200,     720
7: 0,    705600, -1411200,   1206240,  -591360,    188160,  -40320,    5040
8: 0, -43751232, 87502464, -74813760, 36747648, -11813760, 2661120, -423360, 40320
.
Let n = 4 and m = 3, then S(2*n + 1, m) = S(9, 3) = 20196. Faulhaber's formula gives this as (0*12 + (-36)*144 + 72*1728 + (-60)*20736 + 24*248832) / (2*120).
		

Crossrefs

Programs

  • Maple
    F := (n, k) -> ifelse(n = 0, 1, (n + 1)!*(-1)^(k + 1)*add(binomial(2*k - 2*j, k + 1)*binomial(2*n + 1, 2*j + 1)*bernoulli(2*n - 2*j) / (k - j), j = 0..(k - 1)/2)): for n from 0 to 8 do seq(F(n, k), k = 0..n) od;

Formula

F(n,1) = (2*n +1)*Bernoulli(2*n)*(n+1)! for n >= 1.
F(n,2) = -(4*n+2)*Bernoulli(2*n)*(n+1)! for n >= 2.
F(n,3) = ((10*n+5)*Bernoulli(2*n) + binomial(2*n+1,3)*Bernoulli(2*n-2)/2)*(n+1)! for n >= 3.

A385567 Triangle read by rows: T(n,k) is the numerator of A(n,k), such that A(n,k) satisfies the identity for sums of odd powers: Sum_{k=1..p} k^(2n-1) = 1/(2*n) * Sum_{k=0..n-1} A(n,k) * (p^2+p)^(n-k), for all integers p >= 1.

Original entry on oeis.org

1, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -4, 2, 0, -1, 1, -5, 3, -3, 0, 5, 1, -4, 17, -10, 5, 0, -691, 1, -35, 287, -118, 691, -691, 0, 7, 1, -8, 112, -352, 718, -280, 140, 0, -3617, 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 43867, 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, -174611
Offset: 0

Views

Author

Kolosov Petro, Jul 31 2025

Keywords

Comments

The companion triangle with the denominators is A386728.
Extension of A093556 with k in the range 0 <= k <= n, and n >= 0.

Examples

			Triangle begins:
---------------------------------------------------------------------------------
k =   0    1     2     3     4       5       6        7       8      9      10
---------------------------------------------------------------------------------
n=0:  1;
n=1:  1,   1;
n=2:  1,   0,  -1;
n=3:  1,  -1,   0,     1;
n=4:  1,  -4,   2,     0,   -1;
n=5:  1,  -5,   3,    -3,    0,      5;
n=6:  1,  -4,  17,   -10,    5,      0,   -691;
n=7:  1, -35, 287,  -118,  691,   -691,      0,       7;
n=8:  1,  -8, 112,  -352,  718,   -280,    140,       0,  -3617;
n=9:  1, -21,  66,  -293, 4557,  -3711,  10851,  -10851,      0, 43867;
n=10: 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335,     0, -174611;
...
		

Crossrefs

Programs

  • Mathematica
    FaulhaberCoefficient[n_, k_] := 0;
    FaulhaberCoefficient[n_, k_] := (-1)^(n - k) * Sum[Binomial[2 n, n - k - j]* Binomial[n - k + j, j] * (n - k - j)/(n - k + j) * BernoulliB[n + k + j], {j, 0, n - k}] /; 0 <= k < n;
    FaulhaberCoefficient[n_, k_] := BernoulliB[2 n] /; k == n;
    Flatten[Table[Numerator[FaulhaberCoefficient[n, k]], {n, 0, 10}, {k, 0, n}]]
  • PARI
    T(n,k) = numerator(if (k==n, bernfrac(2*n), if (kMichel Marcus, Aug 03 2025

Formula

A(n,k) = 0 if k>n or n<0
A(n,k) = (-1)^(n - k) * Sum_{j=0..n-k} binomial(2n, n - k - j) * binomial(n - k + j, j) * (n - k - j)/(n - k + j) * B_{n + k + j}, if 0 <= k < n;
A(n,k) = B_{2n}, if k = n;
T(n,k) = numerator(A(n,k)).

A386728 Triangle read by rows: T(n,k) is the denominator of A(n,k), such that A(n,k) satisfies the identity for sums of odd powers: Sum_{k=1..p} k^(2n-1) = 1/(2*n) * Sum_{k=0..n-1} A(n,k) * (p^2+p)^(n-k), for all integers p >= 1.

Original entry on oeis.org

1, 1, 6, 1, 1, 30, 1, 2, 1, 42, 1, 3, 3, 1, 30, 1, 2, 1, 2, 1, 66, 1, 1, 2, 1, 1, 1, 2730, 1, 6, 15, 3, 15, 30, 1, 6, 1, 1, 3, 3, 3, 1, 1, 1, 510, 1, 2, 1, 1, 5, 2, 5, 10, 1, 798, 1, 3, 2, 7, 1, 3, 42, 21, 21, 1, 330, 1, 2, 3, 2, 1, 6, 15, 3, 5, 10, 1, 138, 1
Offset: 0

Views

Author

Kolosov Petro, Jul 31 2025

Keywords

Comments

The companion triangle with the numerators is A385567.
Extension of A093557 with k in the range 0 <= k <= n.

Examples

			Triangle begins:
  ---------------------------------------------------------
  k =   0  1   2   3    4    5    6   7    8    9    10
  ---------------------------------------------------------
  n=0:  1;
  n=1:  1, 6;
  n=2:  1, 1, 30;
  n=3:  1, 2,  1, 42;
  n=4:  1, 3,  3,  1, 30;
  n=5:  1, 2,  1,  2,  1, 66;
  n=6:  1, 1,  2,  1,  1,  1, 2730;
  n=7:  1, 6, 15,  3, 15, 30,    1,  6;
  n=8:  1, 1,  3,  3,  3,  1,    1,  1, 510;
  n=9:  1, 2,  1,  1,  5,  2,    5, 10,   1, 798;
  n=10: 1, 3,  2,  7,  1,  3,   42, 21,  21,   1, 330;
  ...
		

Crossrefs

Programs

  • Mathematica
    FaulhaberCoefficient[n_, k_] := 0;
    FaulhaberCoefficient[n_, k_] := (-1)^(n - k) * Sum[Binomial[2 n, n - k - j]* Binomial[n - k + j, j] * (n - k - j)/(n - k + j) * BernoulliB[n + k + j], {j, 0, n - k}] /; 0 <= k < n;
    FaulhaberCoefficient[n_, k_] := BernoulliB[2 n] /; k == n;
    Flatten[Table[Denominator[FaulhaberCoefficient[n, k]], {n, 0, 10}, {k, 0, n}]]
  • PARI
    T(n,k) = denominator(if (k==n, bernfrac(2*n), if (kMichel Marcus, Aug 03 2025

Formula

A(n,k) = 0 if k>n or n<0;
A(n,k) = (-1)^(n - k) * Sum_{j=0..n-k} binomial(2n, n - k - j) * binomial(n - k + j, j) * (n - k - j)/(n - k + j) * B_{n + k + j}, if 0 <= k < n;
A(n,k) = B_{2n}, if k = n;
T(n,k) = denominator(A(n,k)).
Showing 1-4 of 4 results.