A354043
Table read by rows: T(n, k) = (-1)^(n-k)*F(n, k)/k!, where F are the Faulhaber numbers A354042.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 4, 1, 0, 36, 36, 10, 1, 0, 600, 600, 170, 20, 1, 0, 16584, 16584, 4720, 574, 35, 1, 0, 705600, 705600, 201040, 24640, 1568, 56, 1, 0, 43751232, 43751232, 12468960, 1531152, 98448, 3696, 84, 1, 0, 3790108800, 3790108800, 1080240480, 132713280, 8554896, 325152, 7812, 120, 1
Offset: 0
Table starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 4, 4, 1;
[4] 0, 36, 36, 10, 1;
[5] 0, 600, 600, 170, 20, 1;
[6] 0, 16584, 16584, 4720, 574, 35, 1;
[7] 0, 705600, 705600, 201040, 24640, 1568, 56, 1;
[8] 0, 43751232, 43751232, 12468960, 1531152, 98448, 3696, 84, 1;
-
T := (n, k) -> ifelse(n = 0, 1, (-1)^n*((n + 1)!/k!)*add(binomial(2*k - 2*j, k + 1)*binomial(2*n + 1, 2*j + 1)*bernoulli(2*n - 2*j) / (j - k), j = 0..(k-1)/2)): for n from 0 to 8 do seq(T(n, k), k = 0..n) od;
A335951
Triangle read by rows. The numerators of the coefficients of the Faulhaber polynomials. T(n,k) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 0, -1, 4, 0, 0, 1, -4, 6, 0, 0, -3, 12, -20, 16, 0, 0, 5, -20, 34, -32, 16, 0, 0, -691, 2764, -4720, 4592, -2800, 960, 0, 0, 105, -420, 718, -704, 448, -192, 48, 0, 0, -10851, 43404, -74220, 72912, -46880, 21120, -6720, 1280
Offset: 0
The first few polynomials are:
[0] 1;
[1] x;
[2] x^2;
[3] (4*x - 1)*x^2*(1/3);
[4] (6*x^2 - 4*x + 1)*x^2*(1/3);
[5] (16*x^3 - 20*x^2 + 12*x - 3)*x^2*(1/5);
[6] (16*x^4 - 32*x^3 + 34*x^2 - 20*x + 5)*x^2*(1/3);
[7] (960*x^5 - 2800*x^4 + 4592*x^3 - 4720*x^2 + 2764*x - 691)*x^2*(1/105);
[8] (48*x^6 - 192*x^5 + 448*x^4 - 704*x^3 + 718*x^2 - 420*x + 105)*x^2*(1/3);
[9] (1280*x^7-6720*x^6+21120*x^5-46880*x^4+72912*x^3-74220*x^2+43404*x-10851)*x^2*(1/45);
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 0, 1;
[3] 0, 0, -1, 4;
[4] 0, 0, 1, -4, 6;
[5] 0, 0, -3, 12, -20, 16;
[6] 0, 0, 5, -20, 34, -32, 16;
[7] 0, 0, -691, 2764, -4720, 4592, -2800, 960;
[8] 0, 0, 105, -420, 718, -704, 448, -192, 48;
[9] 0, 0, -10851, 43404, -74220, 72912, -46880, 21120, -6720, 1280;
- Johann Faulhaber, Academia Algebra. Darinnen die miraculosische Inventiones zu den höchsten Cossen weiters continuirt und profitiert werden. Johann Ulrich Schönigs, Augsburg, 1631.
- C. G. J. Jacobi, De usu legitimo formulae summatoriae Maclaurinianae, J. Reine Angew. Math., 12 (1834), 263-272.
- Donald E. Knuth, Johann Faulhaber and sums of powers, arXiv:math/9207222 [math.CA], 1992; Math. Comp. 61 (1993), no. 203, 277-294.
- Peter Luschny, Illustrating the Faulhaber polynomials for n = 1..7.
Cf.
A335952 (polynomial denominators),
A000012 (row sums of the polynomial coefficients).
-
FaulhaberPolynomial := proc(n) if n = 0 then return 1 fi;
expand((bernoulli(2*n, x+1) - bernoulli(2*n,1))/(2*n));
sort(simplify(expand(subs(x = (sqrt(8*x+1)-1)/2, %))), [x], ascending) end:
Trow := n -> seq(coeff(numer(FaulhaberPolynomial(n)), x, k), k=0..n):
seq(print(Trow(n)), n=0..9);
-
from math import lcm
from itertools import count, islice
from sympy import simplify,sqrt,bernoulli
from sympy.abc import x
def A335951_T(n,k):
z = simplify((bernoulli(2*n,(sqrt(8*x+1)+1)/2)-bernoulli(2*n,1))/(2*n)).as_poly().all_coeffs()
return z[n-k]*lcm(*(d.q for d in z))
def A335951_gen(): # generator of terms
yield from (A335951_T(n,k) for n in count(0) for k in range(n+1))
A335951_list = list(islice(A335951_gen(),20)) # Chai Wah Wu, May 16 2022
-
def A335951Row(n):
R. = PolynomialRing(QQ)
if n == 0: return [1]
b = expand((bernoulli_polynomial(x + 1, 2*n) -
bernoulli_polynomial(1, 2*n))/(2*n))
s = expand(b.subs(x = (sqrt(8*x+1)-1)/2))
return numerator(s).list()
for n in range(10): print(A335951Row(n)) # Peter Luschny, May 17 2022
Original entry on oeis.org
1, 1, 2, 9, 83, 1391, 38498, 1638505, 101604805, 8802059341, 1030071680506, 158430831805049, 31302182958422223, 7792558134438194339, 2404183465743291972650, 906172339589098358635601, 412063269903446575653003241, 223575203315439598127658946681, 143324925086774266814499800353234
Offset: 0
Showing 1-3 of 3 results.
Comments