Original entry on oeis.org
1, 1, 2, 9, 83, 1391, 38498, 1638505, 101604805, 8802059341, 1030071680506, 158430831805049, 31302182958422223, 7792558134438194339, 2404183465743291972650, 906172339589098358635601, 412063269903446575653003241, 223575203315439598127658946681, 143324925086774266814499800353234
Offset: 0
A335951
Triangle read by rows. The numerators of the coefficients of the Faulhaber polynomials. T(n,k) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 0, -1, 4, 0, 0, 1, -4, 6, 0, 0, -3, 12, -20, 16, 0, 0, 5, -20, 34, -32, 16, 0, 0, -691, 2764, -4720, 4592, -2800, 960, 0, 0, 105, -420, 718, -704, 448, -192, 48, 0, 0, -10851, 43404, -74220, 72912, -46880, 21120, -6720, 1280
Offset: 0
The first few polynomials are:
[0] 1;
[1] x;
[2] x^2;
[3] (4*x - 1)*x^2*(1/3);
[4] (6*x^2 - 4*x + 1)*x^2*(1/3);
[5] (16*x^3 - 20*x^2 + 12*x - 3)*x^2*(1/5);
[6] (16*x^4 - 32*x^3 + 34*x^2 - 20*x + 5)*x^2*(1/3);
[7] (960*x^5 - 2800*x^4 + 4592*x^3 - 4720*x^2 + 2764*x - 691)*x^2*(1/105);
[8] (48*x^6 - 192*x^5 + 448*x^4 - 704*x^3 + 718*x^2 - 420*x + 105)*x^2*(1/3);
[9] (1280*x^7-6720*x^6+21120*x^5-46880*x^4+72912*x^3-74220*x^2+43404*x-10851)*x^2*(1/45);
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 0, 1;
[3] 0, 0, -1, 4;
[4] 0, 0, 1, -4, 6;
[5] 0, 0, -3, 12, -20, 16;
[6] 0, 0, 5, -20, 34, -32, 16;
[7] 0, 0, -691, 2764, -4720, 4592, -2800, 960;
[8] 0, 0, 105, -420, 718, -704, 448, -192, 48;
[9] 0, 0, -10851, 43404, -74220, 72912, -46880, 21120, -6720, 1280;
- Johann Faulhaber, Academia Algebra. Darinnen die miraculosische Inventiones zu den höchsten Cossen weiters continuirt und profitiert werden. Johann Ulrich Schönigs, Augsburg, 1631.
- C. G. J. Jacobi, De usu legitimo formulae summatoriae Maclaurinianae, J. Reine Angew. Math., 12 (1834), 263-272.
- Donald E. Knuth, Johann Faulhaber and sums of powers, arXiv:math/9207222 [math.CA], 1992; Math. Comp. 61 (1993), no. 203, 277-294.
- Peter Luschny, Illustrating the Faulhaber polynomials for n = 1..7.
Cf.
A335952 (polynomial denominators),
A000012 (row sums of the polynomial coefficients).
-
FaulhaberPolynomial := proc(n) if n = 0 then return 1 fi;
expand((bernoulli(2*n, x+1) - bernoulli(2*n,1))/(2*n));
sort(simplify(expand(subs(x = (sqrt(8*x+1)-1)/2, %))), [x], ascending) end:
Trow := n -> seq(coeff(numer(FaulhaberPolynomial(n)), x, k), k=0..n):
seq(print(Trow(n)), n=0..9);
-
from math import lcm
from itertools import count, islice
from sympy import simplify,sqrt,bernoulli
from sympy.abc import x
def A335951_T(n,k):
z = simplify((bernoulli(2*n,(sqrt(8*x+1)+1)/2)-bernoulli(2*n,1))/(2*n)).as_poly().all_coeffs()
return z[n-k]*lcm(*(d.q for d in z))
def A335951_gen(): # generator of terms
yield from (A335951_T(n,k) for n in count(0) for k in range(n+1))
A335951_list = list(islice(A335951_gen(),20)) # Chai Wah Wu, May 16 2022
-
def A335951Row(n):
R. = PolynomialRing(QQ)
if n == 0: return [1]
b = expand((bernoulli_polynomial(x + 1, 2*n) -
bernoulli_polynomial(1, 2*n))/(2*n))
s = expand(b.subs(x = (sqrt(8*x+1)-1)/2))
return numerator(s).list()
for n in range(10): print(A335951Row(n)) # Peter Luschny, May 17 2022
A354042
Triangle read by rows. The Faulhaber numbers. F(0, k) = 1 and otherwise F(n, k) = (n + 1)!*(-1)^(k+1)*Sum_{j=0..floor((k-1)/2)} C(2*k-2*j, k+1)*C(2*n+1, 2*j+1) * Bernoulli(2*n-2*j) / (k - j).
Original entry on oeis.org
1, 0, 1, 0, -1, 2, 0, 4, -8, 6, 0, -36, 72, -60, 24, 0, 600, -1200, 1020, -480, 120, 0, -16584, 33168, -28320, 13776, -4200, 720, 0, 705600, -1411200, 1206240, -591360, 188160, -40320, 5040, 0, -43751232, 87502464, -74813760, 36747648, -11813760, 2661120, -423360, 40320
Offset: 0
Triangle starts:
0: 1
1: 0, 1
2: 0, -1, 2
3: 0, 4, -8, 6
4: 0, -36, 72, -60, 24
5: 0, 600, -1200, 1020, -480, 120
6: 0, -16584, 33168, -28320, 13776, -4200, 720
7: 0, 705600, -1411200, 1206240, -591360, 188160, -40320, 5040
8: 0, -43751232, 87502464, -74813760, 36747648, -11813760, 2661120, -423360, 40320
.
Let n = 4 and m = 3, then S(2*n + 1, m) = S(9, 3) = 20196. Faulhaber's formula gives this as (0*12 + (-36)*144 + 72*1728 + (-60)*20736 + 24*248832) / (2*120).
-
F := (n, k) -> ifelse(n = 0, 1, (n + 1)!*(-1)^(k + 1)*add(binomial(2*k - 2*j, k + 1)*binomial(2*n + 1, 2*j + 1)*bernoulli(2*n - 2*j) / (k - j), j = 0..(k - 1)/2)): for n from 0 to 8 do seq(F(n, k), k = 0..n) od;
Showing 1-3 of 3 results.
Comments