A335953 T(n, k) = numerator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)*2^k* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n.
1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 7, 0, -2, 0, 1, 0, 7, 0, -10, 0, 1, -31, 0, 7, 0, -5, 0, 1, 0, -31, 0, 49, 0, -7, 0, 1, 127, 0, -124, 0, 98, 0, -28, 0, 1, 0, 381, 0, -124, 0, 294, 0, -12, 0, 1, -2555, 0, 381, 0, -310, 0, 98, 0, -15, 0, 1
Offset: 0
Examples
[0] 1 [1] 0, 1 [2] -1, 0, 1 [3] 0, -1, 0, 1 [4] 7, 0, -2, 0, 1 [5] 0, 7, 0, -10, 0, 1 [6] -31, 0, 7, 0, -5, 0, 1 [7] 0, -31, 0, 49, 0, -7, 0, 1 [8] 127, 0, -124, 0, 98, 0, -28, 0, 1 [9] 0, 381, 0, -124, 0, 294, 0, -12, 0, 1
Links
- Peter H. N. Luschny, An introduction to the Bernoulli function, arXiv:2009.06743 [math.HO], 2020.
Programs
-
Maple
Bcn := n -> 2^n*bernoulli(n, 1/2): Bcp := n -> add(binomial(n, k)*Bcn(k)*x^(n-k), k=0..n): polycoeff := p -> seq(numer(coeff(p, x, k)), k = 0..degree(p, x)): Trow := n -> polycoeff(Bcp(n)): seq(print(Trow(n)), n=0..9);