A335965 a(n) = number of odd numbers in the n-th row of the Narayana triangle A001263.
1, 2, 3, 2, 2, 4, 7, 2, 2, 4, 6, 4, 4, 8, 15, 2, 2, 4, 6, 4, 4, 8, 14, 4, 4, 8, 12, 8, 8, 16, 31, 2, 2, 4, 6, 4, 4, 8, 14, 4, 4, 8, 12, 8, 8, 16, 30, 4, 4, 8, 12, 8, 8, 16, 28, 8, 8, 16, 24, 16, 16, 32, 63, 2, 2, 4, 6, 4, 4, 8, 14, 4, 4, 8, 12, 8, 8, 16, 30, 4, 4, 8
Offset: 1
Keywords
Examples
The Narayana numbers are binomial(n-1, k-1)*binomial(n, k-1)/k. a(4)=4 since for n=4 there are two odd numbers among 1,6,6,1.
Links
- S.P. Eu, S.C. Liu, Y.N. Yeh, On the Congruences of Some Combinatorial Numbers, Studies in Applied Mathematics, 116(2006), 135-144.
Crossrefs
Cf. A001263.
Programs
-
Mathematica
a[n_] := Count[Table[Binomial[n - 1, k - 1] Binomial[n, k - 1]/k, {k, 1, n}], ?OddQ]; Array[a, 100] (* _Amiram Eldar, Jul 02 2020 *)
-
PARI
a(n) = sum(k=1, n, binomial(n-1, k-1)*binomial(n, k-1)/k % 2); \\ Michel Marcus, Jul 02 2020
Comments