cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336032 Number of compositions of n such that the set of parts and the set of multiplicities of parts are disjoint.

Original entry on oeis.org

1, 0, 2, 2, 2, 4, 6, 6, 14, 34, 79, 159, 227, 429, 727, 1146, 1999, 3238, 5018, 8976, 14977, 24768, 38400, 70678, 152535, 295493, 617675, 1404099, 3023086, 6685876, 14230031, 30218806, 62175519, 127820798, 257285277, 516574751, 1021334631, 2009999405, 3917878730
Offset: 0

Views

Author

Alois P. Heinz, Jul 07 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p, f, g) option remember; `if`(f intersect g<>{}, 0,
          `if`(n=0, p!, `if`(i<1, 0, add(b(n-i*j, i-1, p+j, `if`(j=0,
           f, {f[], i}), `if`(j=0, g, {g[], j}))/j!, j=0..n/i))))
        end:
    a:= n-> b(n$2, 0, {}$2):
    seq(a(n), n=0..32);
  • Mathematica
    b[n_, i_, p_, f_, g_] := b[n, i, p, f, g] = If[f ~Intersection~ g != {}, 0,
         If[n == 0, p!, If[i < 1, 0, Sum[b[n - i*j, i - 1, p + j,
         If[j == 0, f, Union@Append[f, i]],
         If[j == 0, g, Union@Append[g, j]]]/j!, {j, 0, n/i}]]]];
    a[n_] := b[n, n, 0, {}, {}];
    Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Apr 13 2022, after Alois P. Heinz *)