cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336065 Decimal expansion of the asymptotic density of the numbers divisible by the maximal exponent in their prime factorization (A336064).

Original entry on oeis.org

8, 4, 8, 9, 5, 7, 1, 9, 5, 0, 0, 4, 4, 9, 3, 3, 2, 8, 1, 4, 2, 7, 1, 0, 9, 7, 6, 8, 5, 4, 4, 3, 5, 2, 9, 2, 6, 7, 7, 9, 1, 4, 7, 2, 8, 9, 9, 4, 9, 1, 8, 1, 0, 0, 9, 7, 8, 8, 1, 7, 6, 4, 4, 2, 0, 5, 6, 1, 5, 7, 0, 9, 6, 6, 9, 2, 4, 6, 7, 0, 3, 0, 0, 1, 5, 8, 6
Offset: 0

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Examples

			0.848957195004493328142710976854435292677914728994918...
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 331.

Crossrefs

Programs

  • Mathematica
    f[k_] := Module[{f = FactorInteger[k]}, p = f[[;; , 1]]; e = f[[;; , 2]]; (1/Zeta[k + 1])* Times @@ ((p^(k - e + 1) - 1)/(p^(k + 1) - 1)) - (1/Zeta[k]) * Times @@ ((p^(k - e) - 1)/(p^k - 1))]; RealDigits[1/Zeta[2] + Sum[f[k], {k, 2, 1000}], 10, 100][[1]]

Formula

Equals 1/zeta(2) + Sum_{k>=2} ((1/zeta(k+1)) * Product_{p prime, p|k} ((p^(k-e(p,k)+1) - 1)/(p^(k+1) - 1)) - (1/zeta(k)) * Product_{p prime, p|k} ((p^(k-e(p,k)) - 1)/(p^k - 1))), where e(p,k) is the largest exponent of p dividing k.