cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A336064 Numbers divisible by the maximal exponent in their prime factorization (A051903).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

The asymptotic density of this sequence is A336065 = 0.848957... (Schinzel and Šalát, 1994).

Examples

			4 = 2^2 is a term since A051903(4) = 2 is a divisor of 4.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 331.

Crossrefs

A005117 (except for 1) is subsequence.

Programs

  • Mathematica
    H[1] = 0; H[n_] := Max[FactorInteger[n][[;; , 2]]]; Select[Range[2, 100], Divisible[#, H[#]] &]
  • PARI
    isok(m) = if (m>1, (m % vecmax(factor(m)[,2])) == 0); \\ Michel Marcus, Jul 08 2020

A374586 The maximum exponent in the prime factorization of the numbers that are divisible by the maximum exponent in their prime factorization.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 1, 3, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]}, If[e > 0 && Divisible[n, e], e, Nothing]]; Array[f, 150]
  • PARI
    lista(kmax) = {my(e); for(k = 2, kmax, e = vecmax(factor(k)[, 2]); if(!(k % e), print1(e, ", ")));}

Formula

a(n) = A051903(A336064(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} k * d(k) / Sum_{k>=1} d(k) = 1.46254458894503050564..., where d(k) = (1/zeta(k+1)) * Product_{p prime, p|k} ((p^(k-e(p,k)+1) - 1)/(p^(k+1) - 1)) - (1/zeta(k)) * Product_{p prime, p|k} ((p^(k-e(p,k)) - 1)/(p^k - 1)) for k >= 2, and d(1) = 1/zeta(2), and e(p,k) is the exponent of the largest of power of p that divides k.

A144976 Nonsquarefree numbers k such that k is divisible by the maximal exponent in the prime factorization of k.

Original entry on oeis.org

4, 12, 16, 18, 20, 24, 27, 28, 36, 44, 48, 50, 52, 54, 60, 68, 72, 76, 80, 84, 90, 92, 98, 100, 108, 112, 116, 120, 124, 126, 132, 135, 140, 144, 148, 150, 156, 160, 164, 168, 172, 176, 180, 188, 189, 192, 196, 198, 204, 208, 212, 216, 220, 228, 234, 236, 240, 242, 244, 252, 256, 260, 264, 268, 270, 272
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 28 2008

Keywords

Comments

The asymptotic density of this sequence is A336065 - A059956 = 0.24103009315... . - Amiram Eldar, Jan 05 2024

Crossrefs

Intersection of A013929 and A336064.

Programs

  • Maple
    A051903 := proc(n) local a,ifs,p,e; a := 1 ; max( seq(op(2,p),p=ifactors(n)[2]) ); end: isA013929 := proc(n) RETURN( not isprime(n) and A051903(n) > 1 ) ; end: isA144976 := proc(n) RETURN( isA013929(n) and (n mod A051903(n)) = 0 ); end: for n from 4 to 400 do if isA144976(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Oct 24 2008
  • Mathematica
    Select[Range[300],!SquareFreeQ[#]&&Divisible[#,Max[FactorInteger[#][[All,2]]]]&] (* Harvey P. Dale, Jul 01 2017 *)
  • PARI
    is(n) = {my(e = factor(n)[, 2], emax); if(n == 1, 0, emax = vecmax(e); emax > 1 && !(n % emax));} \\ Amiram Eldar, Jan 05 2024

Formula

{A013929(i): A051903(A013929(i)) | A013929(i)}. - R. J. Mathar, Oct 24 2008

Extensions

Adapted definition, inserted 18, 20 and extended. - R. J. Mathar, Oct 24 2008
Showing 1-3 of 3 results.