cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A336065 Decimal expansion of the asymptotic density of the numbers divisible by the maximal exponent in their prime factorization (A336064).

Original entry on oeis.org

8, 4, 8, 9, 5, 7, 1, 9, 5, 0, 0, 4, 4, 9, 3, 3, 2, 8, 1, 4, 2, 7, 1, 0, 9, 7, 6, 8, 5, 4, 4, 3, 5, 2, 9, 2, 6, 7, 7, 9, 1, 4, 7, 2, 8, 9, 9, 4, 9, 1, 8, 1, 0, 0, 9, 7, 8, 8, 1, 7, 6, 4, 4, 2, 0, 5, 6, 1, 5, 7, 0, 9, 6, 6, 9, 2, 4, 6, 7, 0, 3, 0, 0, 1, 5, 8, 6
Offset: 0

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Examples

			0.848957195004493328142710976854435292677914728994918...
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 331.

Crossrefs

Programs

  • Mathematica
    f[k_] := Module[{f = FactorInteger[k]}, p = f[[;; , 1]]; e = f[[;; , 2]]; (1/Zeta[k + 1])* Times @@ ((p^(k - e + 1) - 1)/(p^(k + 1) - 1)) - (1/Zeta[k]) * Times @@ ((p^(k - e) - 1)/(p^k - 1))]; RealDigits[1/Zeta[2] + Sum[f[k], {k, 2, 1000}], 10, 100][[1]]

Formula

Equals 1/zeta(2) + Sum_{k>=2} ((1/zeta(k+1)) * Product_{p prime, p|k} ((p^(k-e(p,k)+1) - 1)/(p^(k+1) - 1)) - (1/zeta(k)) * Product_{p prime, p|k} ((p^(k-e(p,k)) - 1)/(p^k - 1))), where e(p,k) is the largest exponent of p dividing k.

A368714 Numbers whose maximal exponent in their prime factorization is even.

Original entry on oeis.org

1, 4, 9, 12, 16, 18, 20, 25, 28, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 75, 76, 80, 81, 84, 90, 92, 98, 99, 100, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198, 204, 207, 208
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

First differs from A240112 at n = 30.
Numbers k such that A051903(k) is even.
The asymptotic density of this sequence is Sum_{k>=2} (-1)^k * (1 - 1/zeta(k)) = 0.27591672059822700769... .

Crossrefs

Programs

  • Mathematica
    Select[Range[210], # == 1 || EvenQ[Max[FactorInteger[#][[;;, 2]]]] &]
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k == 1 || !(vecmax(factor(k)[,2])%2), print1(k, ", ")));

A368715 Numbers that are not coprime to the maximal exponent in their prime factorization.

Original entry on oeis.org

4, 12, 16, 18, 20, 24, 27, 28, 36, 44, 48, 50, 52, 54, 60, 64, 68, 72, 76, 80, 84, 90, 92, 98, 100, 108, 112, 116, 120, 124, 126, 132, 135, 140, 144, 148, 150, 156, 160, 162, 164, 168, 172, 176, 180, 188, 189, 192, 196, 198, 204, 208, 212, 216, 220, 228, 234, 236, 240, 242, 244
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

Subsequence of A137257 and first differs from it at n = 51.
Numbers k such that gcd(k, A051903(k)) > 1.
Includes all the nonsquarefree terms of A336064.
The asymptotic density of this sequence is 1 - 1/zeta(2) - Sum_{k>=2} (1/(f(k+1, k) * zeta(k+1)) - 1/(f(k, k) * zeta(k))) = 0.24998449199080279703..., where f(e, m) = Product_{primes p|m} ((1-1/p^e)/(1-1/p)).

Crossrefs

Cf. A051903.
Subsequence of A013929 and A137257.
Similar sequences: A060476, A074661, A096432, A336064, A368714.

Programs

  • Mathematica
    Select[Range[210], !CoprimeQ[#, Max[FactorInteger[#][[;;, 2]]]] &]
  • PARI
    lista(kmax) = for(k = 2, kmax, if(gcd(k, vecmax(factor(k)[,2])) > 1, print1(k, ", ")));

A381952 a(n) is the greatest common divisor of n and the maximum exponent in the prime factorization of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2025

Keywords

Comments

The asymptotic density d(k) of the occurrences of each integer k >= 1 in this sequence can be calculated. E.g., d(1) = 0.75001550800919720296... (1 - the density of A368715), and d(2) = 0.16205634516436945215... (see A381953). From these densities the asymptotic mean of this sequence can be evaluated by Sum_{k>=1} k*d(k), but it seems that the expressions for d(k) for large values of k may be complicated.
The sums of the first 10^k terms, for k = 1, 2, ..., are 11, 135, 1396, 14014, 140241, 1402521, 14025251, 140252636, 1402526282, 14025262924, ... . Apparently, the asymptotic mean of this sequence equals 1.402526... .

Examples

			a(1) = gcd(1, A051903(1)) = gcd(1, 0) = 1.
a(4) = gcd(4, A051903(4)) = gcd(4, 2) = 2.
a(16) = gcd(16, A051903(16)) = gcd(16, 4) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := GCD[n, If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]]; Array[a, 100]
  • PARI
    a(n) = gcd(n, if(n > 1, vecmax(factor(n)[, 2]), 0));

Formula

a(n) = gcd(n, A051903(n)).
a(n) >= 2 if and only if n is in A368715.
a(A381953(n)) = 2.
a(A336064(n)) = A051903(A336064(n)).

A336063 Numbers divisible by the minimal exponent in their prime factorization (A051904).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

The asymptotic density of this sequence is 1 (Schinzel and Šalát, 1994).

Examples

			4 = 2^2 is a term since A051904(4) = 2 is a divisor of 4.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 331.

Crossrefs

A005117 (except for 1) is subsequence.

Programs

  • Mathematica
    h[1] = 0; h[n_] := Min[FactorInteger[n][[;; , 2]]]; Select[Range[2, 100], Divisible[#, h[#]] &]
    Select[Range[2,100],Divisible[#,Min[FactorInteger[#][[All,2]]]]&] (* Harvey P. Dale, Aug 31 2020 *)
  • PARI
    isok(m) = if (m>1, (m % vecmin(factor(m)[,2])) == 0); \\ Michel Marcus, Jul 08 2020

A374586 The maximum exponent in the prime factorization of the numbers that are divisible by the maximum exponent in their prime factorization.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 1, 3, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]}, If[e > 0 && Divisible[n, e], e, Nothing]]; Array[f, 150]
  • PARI
    lista(kmax) = {my(e); for(k = 2, kmax, e = vecmax(factor(k)[, 2]); if(!(k % e), print1(e, ", ")));}

Formula

a(n) = A051903(A336064(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} k * d(k) / Sum_{k>=1} d(k) = 1.46254458894503050564..., where d(k) = (1/zeta(k+1)) * Product_{p prime, p|k} ((p^(k-e(p,k)+1) - 1)/(p^(k+1) - 1)) - (1/zeta(k)) * Product_{p prime, p|k} ((p^(k-e(p,k)) - 1)/(p^k - 1)) for k >= 2, and d(1) = 1/zeta(2), and e(p,k) is the exponent of the largest of power of p that divides k.

A144976 Nonsquarefree numbers k such that k is divisible by the maximal exponent in the prime factorization of k.

Original entry on oeis.org

4, 12, 16, 18, 20, 24, 27, 28, 36, 44, 48, 50, 52, 54, 60, 68, 72, 76, 80, 84, 90, 92, 98, 100, 108, 112, 116, 120, 124, 126, 132, 135, 140, 144, 148, 150, 156, 160, 164, 168, 172, 176, 180, 188, 189, 192, 196, 198, 204, 208, 212, 216, 220, 228, 234, 236, 240, 242, 244, 252, 256, 260, 264, 268, 270, 272
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 28 2008

Keywords

Comments

The asymptotic density of this sequence is A336065 - A059956 = 0.24103009315... . - Amiram Eldar, Jan 05 2024

Crossrefs

Intersection of A013929 and A336064.

Programs

  • Maple
    A051903 := proc(n) local a,ifs,p,e; a := 1 ; max( seq(op(2,p),p=ifactors(n)[2]) ); end: isA013929 := proc(n) RETURN( not isprime(n) and A051903(n) > 1 ) ; end: isA144976 := proc(n) RETURN( isA013929(n) and (n mod A051903(n)) = 0 ); end: for n from 4 to 400 do if isA144976(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Oct 24 2008
  • Mathematica
    Select[Range[300],!SquareFreeQ[#]&&Divisible[#,Max[FactorInteger[#][[All,2]]]]&] (* Harvey P. Dale, Jul 01 2017 *)
  • PARI
    is(n) = {my(e = factor(n)[, 2], emax); if(n == 1, 0, emax = vecmax(e); emax > 1 && !(n % emax));} \\ Amiram Eldar, Jan 05 2024

Formula

{A013929(i): A051903(A013929(i)) | A013929(i)}. - R. J. Mathar, Oct 24 2008

Extensions

Adapted definition, inserted 18, 20 and extended. - R. J. Mathar, Oct 24 2008
Showing 1-7 of 7 results.