cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A368714 Numbers whose maximal exponent in their prime factorization is even.

Original entry on oeis.org

1, 4, 9, 12, 16, 18, 20, 25, 28, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 75, 76, 80, 81, 84, 90, 92, 98, 99, 100, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198, 204, 207, 208
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

First differs from A240112 at n = 30.
Numbers k such that A051903(k) is even.
The asymptotic density of this sequence is Sum_{k>=2} (-1)^k * (1 - 1/zeta(k)) = 0.27591672059822700769... .

Crossrefs

Programs

  • Mathematica
    Select[Range[210], # == 1 || EvenQ[Max[FactorInteger[#][[;;, 2]]]] &]
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k == 1 || !(vecmax(factor(k)[,2])%2), print1(k, ", ")));

A381952 a(n) is the greatest common divisor of n and the maximum exponent in the prime factorization of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2025

Keywords

Comments

The asymptotic density d(k) of the occurrences of each integer k >= 1 in this sequence can be calculated. E.g., d(1) = 0.75001550800919720296... (1 - the density of A368715), and d(2) = 0.16205634516436945215... (see A381953). From these densities the asymptotic mean of this sequence can be evaluated by Sum_{k>=1} k*d(k), but it seems that the expressions for d(k) for large values of k may be complicated.
The sums of the first 10^k terms, for k = 1, 2, ..., are 11, 135, 1396, 14014, 140241, 1402521, 14025251, 140252636, 1402526282, 14025262924, ... . Apparently, the asymptotic mean of this sequence equals 1.402526... .

Examples

			a(1) = gcd(1, A051903(1)) = gcd(1, 0) = 1.
a(4) = gcd(4, A051903(4)) = gcd(4, 2) = 2.
a(16) = gcd(16, A051903(16)) = gcd(16, 4) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := GCD[n, If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]]; Array[a, 100]
  • PARI
    a(n) = gcd(n, if(n > 1, vecmax(factor(n)[, 2]), 0));

Formula

a(n) = gcd(n, A051903(n)).
a(n) >= 2 if and only if n is in A368715.
a(A381953(n)) = 2.
a(A336064(n)) = A051903(A336064(n)).

A374587 The maximum exponent in the prime factorization of the numbers that are not coprime to the maximum exponent in their prime factorization.

Original entry on oeis.org

2, 2, 4, 2, 2, 3, 3, 2, 2, 2, 4, 2, 2, 3, 2, 6, 2, 3, 2, 4, 2, 2, 2, 2, 2, 3, 4, 2, 3, 2, 2, 2, 3, 2, 4, 2, 2, 2, 5, 4, 2, 3, 2, 4, 2, 2, 3, 6, 2, 2, 2, 4, 2, 3, 2, 2, 2, 2, 4, 2, 2, 2, 8, 2, 3, 2, 3, 4, 2, 2, 2, 2, 3, 2, 4, 2, 2, 3, 2, 6, 4, 2, 4, 2, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]}, If[!CoprimeQ[n, e], e, Nothing]]; Array[f, 350]
  • PARI
    lista(kmax) = {my(e); for(k = 2, kmax, e = vecmax(factor(k)[, 2]); if(gcd(k, e) > 1, print1(e, ", ")));}

Formula

a(n) = A051903(A368715(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=2} k * d(k) / Sum_{k>=2} d(k) = 2.74240523513766773312..., where d(k) = (1 - 1/f(k+1, k))/zeta(k+1) - (1 - 1/f(k, k))/zeta(k), and f(e, m) = Product_{primes p|m} ((1-1/p^e)/(1-1/p)).

A381953 Numbers k such that A381952(k) = 2.

Original entry on oeis.org

4, 12, 18, 20, 28, 36, 44, 50, 52, 60, 64, 68, 76, 84, 90, 92, 98, 100, 116, 124, 126, 132, 140, 148, 150, 156, 162, 164, 172, 180, 188, 196, 198, 204, 212, 220, 228, 234, 236, 242, 244, 252, 260, 268, 276, 284, 292, 294, 300, 306, 308, 316, 320, 332, 338, 340
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2025

Keywords

Comments

Disjoint union of {2 * m | m is an odd number such that A051903(m) > 0 and is divisible by 4}, {2^e * m | m is an odd number such that A051903(m) == 2 (mod 4), gcd(A051903(m), m) = 1), 1 <= e <= A051903(m)}, and {2^e * m | A051903(m) < e, e == 2 (mod 4), gcd(e, m) = 1}.
The asymptotic density of this sequence is Sum_{k>=1} (1-2^(4*k)/((2^(4*k)-1)*zeta(4*k)) - (1-2^(4*k+1)/((2^(4*k+1)-1)*zeta(4*k+1)))))/4 + Sum_{k>=1} (1-1/2^(4*k-2)) * (1-1/2)/(1-1/2^(4*k-1)) * f(2*k-1,4*k-1)/zeta(4*k-1) - (1-1/2^(4*k-3)) * f(4*k-2,4*k-2)/zeta(4*k-2) = 0.16205634516436945215..., where f(n,e) = Product_{prime p|n} (1-1/p)/(1-1/p^e).

Examples

			4 is a term since A381952(4) = gcd(4, A051903(4)) = gcd(4, 2) = 2.
		

Crossrefs

Subsequence of A368715 (numbers k such that A381952(k) >= 2).

Programs

  • Mathematica
    q[k_] := GCD[k, Max[FactorInteger[k][[;;, 2]]]] == 2; Select[2*Range[200], q]
  • PARI
    isok(k) = !(k % 2) && gcd(k, vecmax(factor(k)[, 2])) == 2;
Showing 1-4 of 4 results.