A336066 Numbers k such that the exponent of the highest power of 2 dividing k (A007814) is a divisor of k.
2, 4, 6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 34, 36, 38, 42, 44, 46, 48, 50, 52, 54, 58, 60, 62, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 90, 92, 94, 98, 100, 102, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 130, 132, 134, 138, 140, 142, 144
Offset: 1
Keywords
Examples
2 is a term since A007814(2) = 1 is a divisor of 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Tibor Šalát, On the function a_p, p^a_p(n) || n (n > 1), Mathematica Slovaca, Vol. 44, No. 2 (1994), pp. 143-151.
Crossrefs
Programs
-
Mathematica
Select[Range[2, 150, 2], Divisible[#, IntegerExponent[#, 2]] &]
-
PARI
isok(m) = if (!(m%2), (m % valuation(m,2)) == 0); \\ Michel Marcus, Jul 08 2020
-
Python
from itertools import count, islice def A336066_gen(startvalue=2): # generator of terms >= startvalue return filter(lambda n:n%(~n&n-1).bit_length()==0,count(max(startvalue+startvalue&1,2),2)) A336066_list = list(islice(A336066_gen(startvalue=3),30)) # Chai Wah Wu, Jul 10 2022
Comments