A336087 Triangle read by rows: T(n, k) is the number of forests with n (unlabeled) nodes and k planted trees.
0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 4, 1, 0, 0, 0, 9, 3, 1, 0, 0, 0, 20, 6, 1, 0, 0, 0, 0, 48, 16, 3, 1, 0, 0, 0, 0, 115, 37, 7, 1, 0, 0, 0, 0, 0, 286, 96, 18, 3, 1, 0, 0, 0, 0, 0, 719, 239, 44, 7, 1, 0, 0, 0, 0, 0, 0, 1842, 622, 117, 19, 3, 1, 0, 0, 0, 0, 0, 0, 4766, 1607, 299, 46, 7, 1, 0, 0, 0, 0, 0, 0, 0, 12486, 4235, 793, 124
Offset: 1
Examples
Triangle T(n,k) n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 0; 2 1, 0; 3 1, 0, 0; 4 2, 1, 0, 0; 5 4, 1, 0, 0, 0; 6 9, 3, 1, 0, 0, 0; 7 20, 6, 1, 0, 0, 0, 0; 8 48, 16, 3, 1, 0, 0, 0, 0; 9 115, 37, 7, 1, 0, 0, 0, 0, 0; 10 286, 96, 18, 3, 1, 0, 0, 0, 0, 0; 11 719, 239, 44, 7, 1, 0, 0, 0, 0, 0, 0; 12 1842, 622, 117, 19, 3, 1, 0, 0, 0, 0, 0, 0; 13 4766, 1607, 299, 46, 7, 1, 0, 0, 0, 0, 0, 0, 0; 14 12486, 4235, 793, 124, 19, 3, 1, 0, 0, 0, 0, 0, 0, 0; 15 32973, 11185, 2095, 320, 47, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0; ... n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A005199(6) = Sum_{k=1..6}( k * T(6,k) ) = 1*9 + 2*3 +3*1 = 18.
Links
- E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121.
- Index entries for sequences related to rooted trees
Programs
-
PARI
g(m) = {my(f); if(m==0, return(1)); f = vector(m+1); f[1]=1; for(j=1, m, f[j+1]=1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1])); f[m+1] }; global(max_n = 130); A000081 = vector(max_n, n, g(n-1)); F(n,t)={my(s=0, D, c, P_1); if(n==1,return(0)); forpart(P_1 = n, D = Set(P_1); c = vector(#D); for(k=1, #D, c[k] = #select(x->x == D[k], Vec(P_1))); s += prod(k=1, #D, binomial( A000081[D[k]-1] + c[k] - 1, c[k])),[2,n],[t,t]); s};
Comments