cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A336087 Triangle read by rows: T(n, k) is the number of forests with n (unlabeled) nodes and k planted trees.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 4, 1, 0, 0, 0, 9, 3, 1, 0, 0, 0, 20, 6, 1, 0, 0, 0, 0, 48, 16, 3, 1, 0, 0, 0, 0, 115, 37, 7, 1, 0, 0, 0, 0, 0, 286, 96, 18, 3, 1, 0, 0, 0, 0, 0, 719, 239, 44, 7, 1, 0, 0, 0, 0, 0, 0, 1842, 622, 117, 19, 3, 1, 0, 0, 0, 0, 0, 0, 4766, 1607, 299, 46, 7, 1, 0, 0, 0, 0, 0, 0, 0, 12486, 4235, 793, 124
Offset: 1

Views

Author

Washington Bomfim, Jul 08 2020

Keywords

Comments

The number of planted trees with n+1 nodes is equal to the number of rooted trees with n nodes. [See Palmer-Schwenk link, pp. 115].

Examples

			                           Triangle T(n,k)
n\k     1      2     3    4   5  6  7  8 9 10 11 12 13 14 15
1       0;
2       1,     0;
3       1,     0,    0;
4       2,     1,    0,   0;
5       4,     1,    0,   0,  0;
6       9,     3,    1,   0,  0, 0;
7      20,     6,    1,   0,  0, 0, 0;
8      48,    16,    3,   1,  0, 0, 0, 0;
9     115,    37,    7,   1,  0, 0, 0, 0, 0;
10    286,    96,   18,   3,  1, 0, 0, 0, 0, 0;
11    719,   239,   44,   7,  1, 0, 0, 0, 0, 0, 0;
12   1842,   622,  117,  19,  3, 1, 0, 0, 0, 0, 0, 0;
13   4766,  1607,  299,  46,  7, 1, 0, 0, 0, 0, 0, 0, 0;
14  12486,  4235,  793, 124, 19, 3, 1, 0, 0, 0, 0, 0, 0, 0;
15  32973, 11185, 2095, 320, 47, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0;
                           ...
n\k     1      2     3    4   5  6  7  8  9 10 11 12 13 14 15
A005199(6) = Sum_{k=1..6}( k * T(6,k) ) = 1*9 + 2*3 +3*1 = 18.
		

Crossrefs

Cf. A000081, A005199, A005198 (row sums), A033185.

Programs

  • PARI
    g(m) = {my(f); if(m==0, return(1)); f = vector(m+1); f[1]=1;
    for(j=1, m, f[j+1]=1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1])); f[m+1] };
    global(max_n = 130); A000081 = vector(max_n, n, g(n-1));
    F(n,t)={my(s=0, D, c, P_1); if(n==1,return(0)); forpart(P_1 = n, D = Set(P_1); c = vector(#D); for(k=1, #D, c[k] = #select(x->x == D[k], Vec(P_1)));
    s += prod(k=1, #D, binomial( A000081[D[k]-1] + c[k] - 1, c[k])),[2,n],[t,t]); s};

Formula

T(1,1) = 0, if n >= 2 T(n,k) = Sum_{P_1(n,k)}( Product_{j=2..n} binomial(A000081(j-1) + c_j - 1, c_j) ), where P_1(n, k) is the set of the partitions of n with k parts greater than one: 2*c_2 + ... + n*c_n = n; c_2, ..., c_n >= 0.
If k > floor(n/2), T(n,k) = 0; otherwise T(n,k) = A033185(n-k, k).