A336104 Number of permutations of the prime indices of A000225(n) = 2^n - 1 with at least one non-singleton run.
0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 96, 0, 120, 6, 0, 0, 720, 0, 0, 0, 0, 0, 720, 0, 0, 0, 0, 0, 322560, 0, 0, 0, 5040, 0, 4320, 0, 0, 0, 0, 0, 362880, 0, 0
Offset: 1
Examples
The a(21) = 6 permutations of {4, 4, 31, 68}: (4,4,31,68) (4,4,68,31) (31,4,4,68) (31,68,4,4) (68,4,4,31) (68,31,4,4)
Crossrefs
A335432 is the anti-run version.
A335459 is the version for factorial numbers.
A336105 counts all permutations of this multiset.
A336107 is not restricted to predecessors of powers of 2.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A008480 counts permutations of prime indices.
A333489 ranks anti-run compositions.
A335433 lists numbers whose prime indices have an anti-run permutation.
A335448 lists numbers whose prime indices have no anti-run permutation.
A335452 counts anti-run permutations of prime indices.
A335489 counts strict permutations of prime indices.
Comments