A336127 Number of ways to split a composition of n into contiguous subsequences with different sums.
1, 1, 2, 8, 16, 48, 144, 352, 896, 2432, 7168, 16896, 46080, 114688, 303104, 843776, 2080768, 5308416, 13762560, 34865152, 87818240, 241172480, 583008256, 1503657984, 3762290688, 9604956160, 23689428992, 60532195328, 156397207552, 385137770496, 967978254336
Offset: 0
Keywords
Examples
The a(0) = 1 through a(4) = 16 splits: () (1) (2) (3) (4) (1,1) (1,2) (1,3) (2,1) (2,2) (1,1,1) (3,1) (1),(2) (1,1,2) (2),(1) (1,2,1) (1),(1,1) (1),(3) (1,1),(1) (2,1,1) (3),(1) (1,1,1,1) (1),(1,2) (1),(2,1) (1,2),(1) (2,1),(1) (1),(1,1,1) (1,1,1),(1)
Links
Crossrefs
The version with equal instead of different sums is A074854.
Starting with a strict composition gives A336128.
Starting with a partition gives A336131.
Starting with a strict partition gives A336132
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.
Programs
-
Mathematica
splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}]; Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Join@@Permutations/@IntegerPartitions[n]}],{n,0,10}]
Formula
a(n) = Sum_{k=0..n} 2^(n-k) k! A008289(n,k).
Comments