A336131 Number of ways to split an integer partition of n into contiguous subsequences all having different sums.
1, 1, 2, 6, 9, 20, 44, 74, 123, 231, 441, 681, 1188, 1889, 3110, 5448, 8310, 13046
Offset: 0
Examples
The a(1) = 1 through a(4) = 9 splits: (1) (2) (3) (4) (1,1) (2,1) (2,2) (1,1,1) (3,1) (2),(1) (2,1,1) (1),(1,1) (3),(1) (1,1),(1) (1,1,1,1) (2,1),(1) (1),(1,1,1) (1,1,1),(1)
Links
Crossrefs
The version with equal instead of different sums is A317715.
Starting with a composition gives A336127.
Starting with a strict composition gives A336128.
Starting with a strict partition gives A336132.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.
Programs
-
Mathematica
splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}]; Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}]